1. Time-dependent reduction in oxidative capacity among cultured myotubes from spinal cord injured individuals.
- Author
-
Stevanovic S, Dalmao-Fernandez A, Mohamed D, Nyman TA, Kostovski E, Iversen PO, Savikj M, Nikolic N, Rustan AC, Thoresen GH, and Kase ET
- Subjects
- Humans, Cells, Cultured, Adult, Male, Oxidation-Reduction, Female, Glucose metabolism, Time Factors, Fatty Acids metabolism, Energy Metabolism, Middle Aged, Muscle Fibers, Skeletal metabolism, Spinal Cord Injuries metabolism
- Abstract
Background: Skeletal muscle adapts in reaction to contractile activity to efficiently utilize energy substrates, primarily glucose and free fatty acids (FA). Inactivity leads to atrophy and a change in energy utilization in individuals with spinal cord injury (SCI). The present study aimed to characterize possible inactivity-related differences in the energy metabolism between skeletal muscle cells cultured from satellite cells isolated 1- and 12-months post-SCI., Methods: To characterize inactivity-related disturbances in spinal cord injury, we studied skeletal muscle cells isolated from SCI subjects. Cell cultures were established from biopsy samples from musculus vastus lateralis from subjects with SCI 1 and 12 months after the injury. The myoblasts were proliferated and differentiated into myotubes before fatty acid and glucose metabolism were assessed and gene and protein expressions were measured., Results: The results showed that glucose uptake was increased, while oleic acid oxidation was reduced at 12 months compared to 1 month. mRNA expressions of PPARGC1α, the master regulator of mitochondrial biogenesis, and MYH2, a determinant of muscle fiber type, were significantly reduced at 12 months. Proteomic analysis showed reduced expression of several mitochondrial proteins., Conclusion: In conclusion, skeletal muscle cells isolated from immobilized subjects 12 months compared to 1 month after SCI showed reduced fatty acid metabolism and reduced expression of mitochondrial proteins, indicating an increased loss of oxidative capacity with time after injury., (© 2024 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.)
- Published
- 2024
- Full Text
- View/download PDF