1. Cleavage of Carbon Dioxide C=O Bond Promoted by Nickel-Boron Cooperativity in a PBP-Ni Complex.
- Author
-
Álvarez-Rodríguez L, Ríos P, Laglera-Gándara CJ, Jurado A, Fernández-de-Córdova FJ, Gunnoe TB, and Rodríguez A
- Abstract
The synthesis and characterization of (
tBu PBP)Ni(OAc) (5) by insertion of carbon dioxide into the Ni-C bond of (tBu PBP)NiMe (1) is presented. An unexpected CO2 cleavage process involving the formation of new B-O and Ni-CO bonds leads to the generation of a butterfly-structured tetra-nickel cluster (tBu PBOP)2 Ni4 (μ-CO)2 (6). Mechanistic investigation of this reaction indicates a reductive scission of CO2 by O-atom transfer to the boron atom via a cooperative nickel-boron mechanism. The CO2 activation reaction produces a three-coordinate (tBu P2 BO)Ni-acyl intermediate (A) that leads to a (tBu P2 BO)-NiI complex (B) via a likely radical pathway. The NiI species is trapped by treatment with the radical trap (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO) to give (tBu P2 BO)NiII (η2 -TEMPO) (7). Additionally,13 C and1 H NMR spectroscopy analysis using13 C-enriched CO2 provides information about the species involved in the CO2 activation process., (© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)- Published
- 2023
- Full Text
- View/download PDF