1. Minimizing Interfacial Recombination in 1.8 eV Triple-Halide Perovskites for 27.5% Efficient All-Perovskite Tandems.
- Author
-
Yang F, Tockhorn P, Musiienko A, Lang F, Menzel D, Macqueen R, Köhnen E, Xu K, Mariotti S, Mantione D, Merten L, Hinderhofer A, Li B, Wargulski DR, Harvey SP, Zhang J, Scheler F, Berwig S, Roß M, Thiesbrummel J, Al-Ashouri A, Brinkmann KO, Riedl T, Schreiber F, Abou-Ras D, Snaith H, Neher D, Korte L, Stolterfoht M, and Albrecht S
- Abstract
All-perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide-bandgap (WBG) perovskites with higher open-circuit voltage (V
OC ) are essential to further improve the tandem solar cells' performance. Here, a new 1.8 eV bandgap triple-halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light-induced magneto-transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady-state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V VOC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%., (© 2023 The Authors. Advanced Materials published by Wiley-VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF