1. Localization of a FMRFamide-related peptide in efferent neurons and analysis of neuromuscular effects of DRNFLRFamide (DF2) in the crustacean Idotea emarginata.
- Author
-
Weiss T, Kreissl S, and Rathmayer W
- Subjects
- Animals, Central Nervous System drug effects, Central Nervous System metabolism, Crustacea anatomy & histology, Electrophysiology, Excitatory Postsynaptic Potentials drug effects, Immunohistochemistry, Male, Membrane Potentials drug effects, Muscle Contraction drug effects, Muscle Contraction physiology, Muscle, Skeletal physiology, Neuromuscular Junction drug effects, Neuromuscular Junction physiology, Neurons, Efferent drug effects, Neurotransmitter Agents analysis, Patch-Clamp Techniques, Crustacea physiology, FMRFamide metabolism, FMRFamide pharmacology, Muscle, Skeletal drug effects, Neurons, Efferent metabolism
- Abstract
In the ventral nerve cord of the isopod Idotea emarginata, FMRFamide-immunoreactive efferent neurons are confined to pereion ganglion 5 where a single pair of these neurons was identified. Each neuron projects an axon into the ipsilateral ventral and dorsal lateral nerves, which run through the entire animal. The immunoreactive axons form numerous varicosities on the ventral flexor and dorsal extensor muscle fibres, and in the pericardial organs. To analyse the neuromuscular effects of a FMRFamide, we used the DRNFLRFamide (DF2). DF2 acted both pre- and postsynaptically. On the presynaptic side, DF2 increased transmitter release from neuromuscular endings. Postsynaptically, DF2 depolarized muscle fibres by approximately 10 mV. This effect was not observed in leg muscles of a crab. The depolarization required Ca2+, was blocked by substituting Ca2+ with Co2+, but not affected by nifedipine or amiloride. In Idotea, DF2 also potentiated evoked extensor muscle contractions. The amplitude of high K+ contractures was increased in a dose dependent manner with an EC50 value of 40 nm. In current-clamped fibres, DF2 strongly potentiated contractions evoked by current pulses exceeding excitation-contraction threshold. In voltage-clamped fibres, the inward current through l-type Ca2+ channels was increased by the peptide. The observed physiological effects together with the localization of FMRFamide-immunoreactive efferent neurons suggest a role for this type of peptidergic modulation for the neuromuscular performance in Idotea. The pre- and postsynaptic effects of DF2 act synergistically and, in vivo, all should increase the efficacy of motor input to muscles resulting in potentiation of contractions.
- Published
- 2003
- Full Text
- View/download PDF