1. CD5 deletion enhances the antitumor activity of adoptive T cell therapies.
- Author
-
Patel RP, Ghilardi G, Zhang Y, Chiang YH, Xie W, Guruprasad P, Kim KH, Chun I, Angelos MG, Pajarillo R, Hong SJ, Lee YG, Shestova O, Shaw C, Cohen I, Gupta A, Vu T, Qian D, Yang S, Nimmagadda A, Snook AE, Siciliano N, Rotolo A, Inamdar A, Harris J, Ugwuanyi O, Wang M, Carturan A, Paruzzo L, Chen L, Ballard HJ, Blanchard T, Xu C, Abdel-Mohsen M, Gabunia K, Wysocka M, Linette GP, Carreno B, Barrett DM, Teachey DT, Posey AD, Powell DJ Jr, Sauter CT, Pileri S, Pillai V, Scholler J, Rook AH, Schuster SJ, Barta SK, Porazzi P, and Ruella M
- Subjects
- Animals, Mice, Humans, Receptors, Chimeric Antigen immunology, Receptors, Chimeric Antigen genetics, Cell Line, Tumor, CRISPR-Cas Systems, Female, Immunotherapy, Adoptive methods, CD5 Antigens immunology, T-Lymphocytes immunology, T-Lymphocytes transplantation
- Abstract
Most patients treated with US Food and Drug Administration (FDA)-approved chimeric antigen receptor (CAR) T cells eventually experience disease progression. Furthermore, CAR T cells have not been curative against solid cancers and several hematological malignancies such as T cell lymphomas, which have very poor prognoses. One of the main barriers to the clinical success of adoptive T cell immunotherapies is CAR T cell dysfunction and lack of expansion and/or persistence after infusion. In this study, we found that CD5 inhibits CAR T cell activation and that knockout (KO) of CD5 using CRISPR-Cas9 enhances the antitumor effect of CAR T cells in multiple hematological and solid cancer models. Mechanistically, CD5 KO drives increased T cell effector function with enhanced cytotoxicity, in vivo expansion, and persistence, without apparent toxicity in preclinical models. These findings indicate that CD5 is a critical inhibitor of T cell function and a potential clinical target for enhancing T cell therapies.
- Published
- 2024
- Full Text
- View/download PDF