1. The Osteoblast Transcriptome in Developing Zebrafish Reveals Key Roles for Extracellular Matrix Proteins Col10a1a and Fbln1 in Skeletal Development and Homeostasis.
- Author
-
Raman R, Antony M, Nivelle R, Lavergne A, Zappia J, Guerrero-Limón G, Caetano da Silva C, Kumari P, Sojan JM, Degueldre C, Bahri MA, Ostertag A, Collet C, Cohen-Solal M, Plenevaux A, Henrotin Y, Renn J, and Muller M
- Subjects
- Animals, Cell Differentiation, Extracellular Matrix genetics, Homeostasis genetics, Minerals metabolism, Transcriptome genetics, Extracellular Matrix Proteins genetics, Extracellular Matrix Proteins metabolism, Osteoblasts metabolism, Zebrafish genetics, Zebrafish growth & development, Collagen Type X genetics, Collagen Type X physiology
- Abstract
Zebrafish are now widely used to study skeletal development and bone-related diseases. To that end, understanding osteoblast differentiation and function, the expression of essential transcription factors, signaling molecules, and extracellular matrix proteins is crucial. We isolated Sp7-expressing osteoblasts from 4-day-old larvae using a fluorescent reporter. We identified two distinct subpopulations and characterized their specific transcriptome as well as their structural, regulatory, and signaling profile. Based on their differential expression in these subpopulations, we generated mutants for the extracellular matrix protein genes col10a1a and fbln1 to study their functions. The col10a1a
-/- mutant larvae display reduced chondrocranium size and decreased bone mineralization, while in adults a reduced vertebral thickness and tissue mineral density, and fusion of the caudal fin vertebrae were observed. In contrast, fbln1-/- mutants showed an increased mineralization of cranial elements and a reduced ceratohyal angle in larvae, while in adults a significantly increased vertebral centra thickness, length, volume, surface area, and tissue mineral density was observed. In addition, absence of the opercle specifically on the right side was observed. Transcriptomic analysis reveals up-regulation of genes involved in collagen biosynthesis and down-regulation of Fgf8 signaling in fbln1-/- mutants. Taken together, our results highlight the importance of bone extracellular matrix protein genes col10a1a and fbln1 in skeletal development and homeostasis.- Published
- 2024
- Full Text
- View/download PDF