1. Confined growth by self-combustion of a Cu-based nanophase into mesostructured acid supports for DME production from CO2.
- Author
-
Secci F, Mameli V, Sanna Angotzi M, Atzori L, Piroddi L, Pinna N, Mureddu M, and Cannas C
- Abstract
This work deals with the design of nanocomposite hydrogenation-dehydration bifunctional catalysts for the one-pot conversion of CO2 to dimethyl ether (DME), focusing on obtaining a high and homogeneous dispersion of a Cu-based CO2 hydrogenation phase into the pores of mesostructured supports. Particularly, three aluminosilicate mesostructured acid catalysts with catalytic activity towards methanol dehydration and featuring different porous structures (Al-MCM-41, Al-SBA-15, Al-SBA-16) were synthesized and used as supports to host a CuO/ZnO/ZrO2 (CZZ) CO2 hydrogenation catalyst for methanol synthesis. The use of a mesostructured support allows to maximize the exposed surface of the CO2 reduction function by nanostructuring it through its confinement within the mesochannels, thus obtaining nanocomposite bifunctional catalysts with an ultra-small hydrogenation nanophase. The nanocomposites were obtained using an impregnation strategy combined with a self-combustion reaction, allowing to incorporate the CO2 reduction phase inside the mesopores. In all cases, the characterization shows that the hydrogenation phase species are highly and homogeneously dispersed into the supports as either small nanoparticles or as a nanolayer. The as-obtained nanocomposites were tested for their catalytic activity and the results discussed taking into account the structural, textural, and acidic properties of the supports and nanocomposites., (© 2025 Wiley‐VCH GmbH.)
- Published
- 2025
- Full Text
- View/download PDF