1. Cu Based Dilute Alloys for Tuning the C 2+ Selectivity of Electrochemical CO 2 Reduction.
- Author
-
Crandall BS, Qi Z, Foucher AC, Weitzner SE, Akhade SA, Liu X, Kashi AR, Buckley AK, Ma S, Stach EA, Varley JB, Jiao F, and Biener J
- Abstract
Electrochemical CO
2 reduction is a promising technology for replacing fossil fuel feedstocks in the chemical industry but further improvements in catalyst selectivity need to be made. So far, only copper-based catalysts have shown efficient conversion of CO2 into the desired multi-carbon (C2+ ) products. This work explores Cu-based dilute alloys to systematically tune the energy landscape of CO2 electrolysis toward C2+ products. Selection of the dilute alloy components is guided by grand canonical density functional theory simulations using the calculated binding energies of the reaction intermediates CO*, CHO*, and OCCO* dimer as descriptors for the selectivity toward C2+ products. A physical vapor deposition catalyst testing platform is employed to isolate the effect of alloy composition on the C2+ /C1 product branching ratio without interference from catalyst morphology or catalyst integration. Six dilute alloy catalysts are prepared and tested with respect to their C2+ /C1 product ratio using different electrolyzer environments including selected tests in a 100-cm2 electrolyzer. Consistent with theory, CuAl, CuB, CuGa and especially CuSc show increased selectivity toward C2+ products by making CO dimerization energetically more favorable on the dominant Cu facets, demonstrating the power of using the dilute alloy approach to tune the selectivity of CO2 electrolysis., (© 2024 Wiley‐VCH GmbH.)- Published
- 2024
- Full Text
- View/download PDF