5 results on '"Paton-Walsh, Clare"'
Search Results
2. COVID-19 Crisis Reduces Free Tropospheric Ozone Across the Northern Hemisphere.
- Author
-
Steinbrecht W, Kubistin D, Plass-Dülmer C, Davies J, Tarasick DW, von der Gathen P, Deckelmann H, Jepsen N, Kivi R, Lyall N, Palm M, Notholt J, Kois B, Oelsner P, Allaart M, Piters A, Gill M, Van Malderen R, Delcloo AW, Sussmann R, Mahieu E, Servais C, Romanens G, Stübi R, Ancellet G, Godin-Beekmann S, Yamanouchi S, Strong K, Johnson B, Cullis P, Petropavlovskikh I, Hannigan JW, Hernandez JL, Diaz Rodriguez A, Nakano T, Chouza F, Leblanc T, Torres C, Garcia O, Röhling AN, Schneider M, Blumenstock T, Tully M, Paton-Walsh C, Jones N, Querel R, Strahan S, Stauffer RM, Thompson AM, Inness A, Engelen R, Chang KL, and Cooper OR
- Abstract
Throughout spring and summer 2020, ozone stations in the northern extratropics recorded unusually low ozone in the free troposphere. From April to August, and from 1 to 8 kilometers altitude, ozone was on average 7% (≈4 nmol/mol) below the 2000-2020 climatological mean. Such low ozone, over several months, and at so many stations, has not been observed in any previous year since at least 2000. Atmospheric composition analyses from the Copernicus Atmosphere Monitoring Service and simulations from the NASA GMI model indicate that the large 2020 springtime ozone depletion in the Arctic stratosphere contributed less than one-quarter of the observed tropospheric anomaly. The observed anomaly is consistent with recent chemistry-climate model simulations, which assume emissions reductions similar to those caused by the COVID-19 crisis. COVID-19 related emissions reductions appear to be the major cause for the observed reduced free tropospheric ozone in 2020., (© 2021. The Authors.)
- Published
- 2021
- Full Text
- View/download PDF
3. Characterization of aerosols over the Great Barrier Reef: The influence of transported continental sources.
- Author
-
Chen Z, Schofield R, Rayner P, Zhang T, Liu C, Vincent C, Fiddes S, Ryan RG, Alroe J, Ristovski ZD, Humphries RS, Keywood MD, Ward J, Paton-Walsh C, Naylor T, and Shu X
- Subjects
- Australia, Meteorology, Models, Theoretical, Weather, Aerosols analysis, Air Pollutants analysis, Coral Reefs, Environmental Monitoring
- Abstract
The rapid environmental changes in Australia prompt a more thorough investigation of the influence of transportation, local emissions, and optical-chemical properties on aerosol production across the region. A month-long intensive measurement campaign was conducted during spring 2016 at Mission Beach, a remote coastal site west of the Great Barrier Reef (GBR) on the north-east coast of Australia. One aerosol pollution episode was investigated in early October. This event was governed by meteorological conditions and characterized by the increase in black carbon (BC) mass concentration (averaged value of 0.35 ± 0.20 μg m
-3 ). Under the influence of the continental transportation, a new layer of nucleation-mode aerosols with an initial size diameter of 20 nm was observed and aerosol number concentrations reached the peak of 6733 cm-3 at a diameter of 29 nm. The averaged aerosol extinction coefficient at the height of 2 km was 150 Mm-1 , with a small depolarized ratio (3.5-5%). Simultaneously, the boundary layer height presented a fall-rise trend in the presence of these enhanced aerosol concentrations and became stable in a later stage of the episode. We did not observe clear boundary layer height diurnal variations from the LiDAR observations or from the Weather Research and Forecasting (WRF) model outputs, except in an earlier stage of the aerosol episode for the former. Although the sea breeze may have been responsible for these particles, on the balance of available data, we suggest that the aerosol properties at the GBR surface during this period are more likely influenced by regional transportation of continental sources, including biomass-burning aerosols., (Copyright © 2019 Elsevier B.V. All rights reserved.)- Published
- 2019
- Full Text
- View/download PDF
4. Emissions of Selected Semivolatile Organic Chemicals from Forest and Savannah Fires.
- Author
-
Wang X, Thai PK, Mallet M, Desservettaz M, Hawker DW, Keywood M, Miljevic B, Paton-Walsh C, Gallen M, and Mueller JF
- Subjects
- Environmental Monitoring, Forests, Organic Chemicals, Polychlorinated Biphenyls, Fires, Polycyclic Aromatic Hydrocarbons
- Abstract
The emission factors (EFs) for a broad range of semivolatile organic chemicals (SVOCs) from subtropical eucalypt forest and tropical savannah fires were determined for the first time from in situ investigations. Significantly higher (t test, P < 0.01) EFs (μg kg
-1 dry fuel, gas + particle-associated) for polycyclic aromatic hydrocarbons (∑13 PAHs) were determined from the subtropical forest fire (7,000 ± 170) compared to the tropical savannah fires (1,600 ± 110), due to the approximately 60-fold higher EFs for 3-ring PAHs from the former. EF data for many PAHs from the eucalypt forest fire were comparable with those previously reported from pine and fir forest combustion events. EFs for other SVOCs including polychlorinated biphenyl (PCB), polychlorinated naphthalene (PCN), and polybrominated diphenyl ether (PBDE) congeners as well as some pesticides (e.g., permethrin) were determined from the subtropical eucalypt forest fire. The highest concentrations of total suspended particles, PAHs, PCBs, PCNs, and PBDEs, were typically observed in the flaming phase of combustion. However, concentrations of levoglucosan and some pesticides such as permethrin peaked during the smoldering phase. Along a transect (10-150-350 m) from the forest fire, concentration decrease for PCBs during flaming was faster compared to PAHs, while levoglucosan concentrations increased.- Published
- 2017
- Full Text
- View/download PDF
5. Absolute calibration of the intramolecular site preference of 15N fractionation in tropospheric N2O by FT-IR spectroscopy.
- Author
-
Griffith DW, Parkes SD, Haverd V, Paton-Walsh C, and Wilson SR
- Abstract
Nitrous oxide (N(2)O) plays important roles in atmospheric chemistry both as a greenhouse gas and in stratospheric ozone depletion. Isotopic measurements of N(2)O have provided an invaluable insight into understanding its atmospheric sources and sinks. The preference for (15)N fractionation between the central and terminal positions (the "site preference") is particularly valuable because it depends principally on the processes involved in N(2)O production or consumption, rather than the (15)N content of the substrate from which it is formed. Despite the value of measurements of the site preference, there is no internationally recognized standard reference material of accurately known and accepted site preference, and there has been some lack of agreement in published studies aimed at providing such a standard. Previous work has been based on isotope ratio mass spectrometry (IRMS); in this work we provide an absolute calibration for the intramolecular site preference of (15)N fractionation of working standard gases used in our laboratory by a completely independent technique--high-resolution Fourier transform infrared (FT-IR) spectroscopy. By reference to this absolute calibration, we determine the site preference for 25 samples of tropospheric N(2)O collected under clean air conditions to be 19.8 per thousand +/- 2.1 per thousand. This result is in agreement with that based on the earlier absolute calibration of Toyoda and Yoshida (Toyoda , S. , and Yoshida , N. Anal. Chem. 1999 , 71, 4711-4718 ) who found an average tropospheric site preference of 18.7 per thousand +/- 2.2 per thousand. We now recommend an interlaboratory exchange of working standard N(2)O gases as the next step to providing an international reference standard.
- Published
- 2009
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.