268 results on '"Meyerholz, David"'
Search Results
2. Tissue resident memory T cells contribute to protectionagainst heterologousSARS-CoV-2 challenge.
- Author
-
Odle A, Kar M, Verma AK, Sariol A, Meyerholz DK, Suthar MS, Wong LR, and Perlman S
- Abstract
Widespread vaccination and natural infection have resulted in greatly decreased rates of severe disease, hospitalization and death after subsequent infection or reinfection with SARS-CoV-2. New vaccine formulations are based on circulating strains of virus, which have tended to evolve to more readily transmit human to human and to evade the neutralizing antibody response. An assumption of this approach is that ancestral strains of virus will not recur. Recurrence of these strains could be a problem for individuals not previously exposed to ancestral spike protein by vaccination or infection. Here, we addressed this question by infecting mice with recent SARS-CoV-2 variants and then challenging them with a highly pathogenic mouse-adapted virus closely related to the ancestral Wuhan-1 strain (SARS2-N501YMA30). We found that challenged mice were protected from death and substantial weight loss, even though they generally had low or no neutralizing antibody response to SARS2-N501YMA30 at the time of reinfection. T cell depletion from the previously infected mice did not diminish infection against clinical disease, although it did result in delayed kinetics of virus clearance in the nasal turbinate and in some cases, in the lungs. Levels of tissue resident memory T cells were significantly elevated in the nasal turbinate of previously infected mice compared to mice that had no previous exposure to SARS-CoV-2. However, this phenotype was not seen in lung tissues. Together, these results indicate that the immune response to newly circulating variants afforded protection against re-infection with the ancestral virus that was at least in part T cell based.
- Published
- 2024
- Full Text
- View/download PDF
3. Respiratory syncytial virus infection provides protection against severe acute respiratory syndrome coronavirus challenge.
- Author
-
Hartwig SM, Odle A, Wong L-YR, Meyerholz DK, Perlman S, and Varga SM
- Subjects
- Animals, Mice, Female, Humans, Disease Models, Animal, Respiratory Syncytial Viruses physiology, Respiratory Syncytial Viruses immunology, Respiratory Syncytial Virus Infections prevention & control, Respiratory Syncytial Virus Infections immunology, Respiratory Syncytial Virus Infections virology, COVID-19 prevention & control, COVID-19 virology, Mice, Inbred BALB C, SARS-CoV-2 immunology
- Abstract
Respiratory infections are a major health burden worldwide. Respiratory syncytial virus (RSV) is among the leading causes of hospitalization in both young children and older adults. The onset of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and the public health response had a profound impact on the normal seasonal outbreaks of other respiratory viruses. However, little is known about how a prior respiratory virus infection impacts SARS-CoV-2 disease outcomes. In this study, we examine the impact of a previous RSV infection on the disease severity of a subsequent SARS-CoV-2 challenge in BALB/c mice. Mice infected with RSV, followed by a SARS-CoV-2 challenge, 30 days later, exhibited decreased weight loss and increased survival as compared to control groups. Our results suggest a prior RSV infection can provide protection against a subsequent SARS-CoV-2 infection., Importance: Severe acute respiratory syndrome coronavirus 2 and respiratory syncytial virus are respiratory viruses that are a major health burden worldwide. Severe acute respiratory syndrome coronavirus 2 and respiratory syncytial virus frequently have peak seasonal outbreaks during the winter months, and are capable of causing severe respiratory disease, often leading to hospitalization. The 2019 pandemic brought attention to the importance of understanding how co-circulating viruses can impact the disease severity of other respiratory viruses. It is known that many hospitalized patients are undergoing multiple viral infections at once, yet not much has been studied to understand the impact this has on other respiratory viruses or patients. How co-circulating viruses impact one another can provide critical knowledge for future interventions of hospitalized patients and potential vaccination strategies., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
4. IL-13 induces loss of CFTR in ionocytes and reduces airway epithelial fluid absorption.
- Author
-
Romano Ibarra GS, Lei L, Yu W, Thurman AL, Gansemer ND, Meyerholz DK, Pezzulo AA, McCray PB, Thornell IM, and Stoltz DA
- Subjects
- Humans, Male, Female, Pulmonary Disease, Chronic Obstructive metabolism, Pulmonary Disease, Chronic Obstructive pathology, Chlorides metabolism, Middle Aged, Adult, Interleukin-13 metabolism, Cystic Fibrosis Transmembrane Conductance Regulator metabolism, Cystic Fibrosis Transmembrane Conductance Regulator genetics, Asthma metabolism, Asthma pathology, Asthma genetics, Respiratory Mucosa metabolism, Respiratory Mucosa pathology, Epithelial Cells metabolism, Epithelial Cells pathology
- Abstract
The airway surface liquid (ASL) plays a crucial role in lung defense mechanisms, and its composition and volume are regulated by the airway epithelium. The cystic fibrosis transmembrane conductance regulator (CFTR) is abundantly expressed in a rare airway epithelial cell type called an ionocyte. Recently, we demonstrated that ionocytes can increase liquid absorption through apical CFTR and basolateral barttin/chloride channels, while airway secretory cells mediate liquid secretion through apical CFTR channels and basolateral NKCC1 transporters. Th2-driven (IL-4/IL-13) airway diseases, such as asthma, cause goblet cell metaplasia, accompanied by increased mucus production and airway secretions. In this study, we investigate the effect of IL-13 on chloride and liquid transport performed by ionocytes. IL-13 treatment of human airway epithelia was associated with reduced epithelial liquid absorption rates and increased ASL volume. Additionally, IL-13 treatment reduced the abundance of CFTR-positive ionocytes and increased the abundance of CFTR-positive secretory cells. Increasing ionocyte abundance attenuated liquid secretion caused by IL-13. Finally, CFTR-positive ionocytes were less common in asthma and chronic obstructive pulmonary disease and were associated with airflow obstruction. Our findings suggest that loss of CFTR in ionocytes contributes to the liquid secretion observed in IL-13-mediated airway diseases.
- Published
- 2024
- Full Text
- View/download PDF
5. Upregulation of fatty acid synthesis genes in the livers of adolescent female rats caused by inhalation exposure to PCB52 (2,2',5,5'-Tetrachlorobiphenyl).
- Author
-
Helm-Kwasny BK, Bullert A, Wang H, Chimenti MS, Adamcakova-Dodd A, Jing X, Li X, Meyerholz DK, Thorne PS, Lehmler HJ, Ankrum JA, and Klingelhutz AJ
- Subjects
- Animals, Female, Male, Humans, Air Pollutants toxicity, Rats, Rats, Sprague-Dawley, Sterol Regulatory Element Binding Protein 1 genetics, Sterol Regulatory Element Binding Protein 1 metabolism, Polychlorinated Biphenyls toxicity, Liver metabolism, Liver drug effects, Up-Regulation drug effects, Fatty Acids metabolism, Inhalation Exposure
- Abstract
Elevated airborne PCB levels in older schools are concerning due to their health impacts, including cancer, metabolic dysfunction-associated steatotic liver disease (MASLD), cardiovascular issues, neurodevelopmental diseases, and diabetes. During a four-week inhalation exposure to PCB52, an air pollutant commonly found in school environments, adolescent rats exhibited notable presence of PCB52 and its hydroxylated forms in their livers, alongside changes in gene expression. Female rats exhibited more pronounced changes in gene expression compared to males, particularly in fatty acid synthesis genes regulated by the transcription factor SREBP1. In vitro studies with human liver cells showed that the hydroxylated metabolite of PCB52, 4-OH-PCB52, but not the parent compound, upregulated genes involved in fatty acid biosynthesis similar to in vivo exposure. These findings highlight the sex-specific effects of PCB52 exposure on livers, particularly in females, suggesting a potential pathway for increased MASLD susceptibility., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper, (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
6. Development and Initial Characterization of Pigs with DNAI1 Mutations and Primary Ciliary Dyskinesia.
- Author
-
Abou Alaiwa MA, Hilkin BM, Price MP, Gansemer ND, Rector MR, Stroik MR, Powers LS, Whitworth KM, Samuel MS, Jain A, Ostedgaard LS, Ernst SE, Philibert W, Boyken LD, Moninger TO, Karp PH, Hornick DB, Sinn PL, Fischer AJ, Pezzulo AA, McCray PB Jr, Meyerholz DK, Zabner J, Prather RS, Welsh MJ, and Stoltz DA
- Abstract
Mutations in more than 50 different genes cause primary ciliary dyskinesia (PCD) by disrupting the activity of motile cilia that facilitate mucociliary transport (MCT). Knowledge of PCD has come from studies identifying disease-causing mutations, characterizing structural cilia abnormalities, finding genotype-phenotype relationships, and studying the cell biology of cilia. Despite these important findings, we still lack effective treatments and people with PCD have significant pulmonary impairment. As with many other diseases, a better understanding of pathogenic mechanisms may lead to effective treatments. To pursue disease mechanisms, we used CRISPR-Cas9 to develop a PCD pig with a disrupted DNAI1 gene. PCD pig airway cilia lacked the outer dynein arm and had impaired beating. MCT was impaired under both baseline conditions and after cholinergic stimulation in PCD pigs. Neonatal PCD pigs developed neonatal respiratory distress with evidence of atelectasis, air trapping, and airway mucus obstruction. Despite airway mucus accumulation, lung bacterial counts were similar between neonatal wild-type and PCD pigs. Sinonasal disease was present in all neonatal PCD pigs. Older PCD pigs developed worsening airway mucus obstruction, inflammation, and bacterial infection. This pig model closely mimics the disease phenotype seen in people with PCD and can be used to better understand the pathophysiology of PCD airway disease., Competing Interests: The authors have declared that no conflict of interest exists.
- Published
- 2024
- Full Text
- View/download PDF
7. Universal subunit vaccine protects against multiple SARS-CoV-2 variants and SARS-CoV.
- Author
-
Wang G, Verma AK, Shi J, Guan X, Meyerholz DK, Bu F, Wen W, Liu B, Li F, Perlman S, and Du L
- Abstract
Although Omicron RBD of SARS-CoV-2 accumulates many mutations, the backbone region (truncated RBD) of spike protein is highly conserved. Here, we designed several subunit vaccines by keeping the conserved spike backbone region of SARS-CoV-2 Omicron BA.1 subvariant (S-6P-no-RBD), or inserting the RBD of Delta variant (S-6P-Delta-RBD), Omicron (BA.5) variant (S-6P-BA5-RBD), or ancestral SARS-CoV-2 (S-6P-WT-RBD) to the above backbone construct, and evaluated their ability to induce immune responses and cross-protective efficacy against various SARS-CoV-2 variants and SARS-CoV. Among the four subunit vaccines, S-6P-Delta-RBD protein elicited broad and potent neutralizing antibodies against all SARS-CoV-2 variants tested, including Alpha, Beta, Gamma, and Delta variants, the BA.1, BA.2, BA.2.75, BA.4.6, and BA.5 Omicron subvariants, and the ancestral strain of SARS-CoV-2. This vaccine prevented infection and replication of SARS-CoV-2 Omicron, and completely protected immunized mice against lethal challenge with the SARS-CoV-2 Delta variant and SARS-CoV. Sera from S-6P-Delta-RBD-immunized mice protected naive mice against challenge with the Delta variant, with significantly reduced viral titers and without pathological effects. Protection correlated positively with the serum neutralizing antibody titer. Overall, the designed vaccine has potential for development as a universal COVID-19 vaccine and/or a pan-sarbecovirus subunit vaccine that will prevent current and future outbreaks caused by SARS-CoV-2 variants and SARS-related CoVs., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
8. Mutations in nonstructural proteins essential for pathogenicity in SARS-CoV-2-infected mice.
- Author
-
Pan R, Li P, Meyerholz DK, and Perlman S
- Subjects
- Animals, Mice, Virulence, Humans, Spike Glycoprotein, Coronavirus genetics, Spike Glycoprotein, Coronavirus metabolism, Vero Cells, Chlorocebus aethiops, Virus Replication, Female, Viral Nonstructural Proteins genetics, Viral Nonstructural Proteins metabolism, COVID-19 virology, SARS-CoV-2 pathogenicity, SARS-CoV-2 genetics, Mutation, Disease Models, Animal
- Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) has resulted in substantial morbidity and mortality. The basis of severe disease in humans is difficult to determine without the use of experimental animal models. Mice are resistant to infection with ancestral strains of SARS-CoV-2, although many variants that arose later in the pandemic were able to directly infect mice. In almost all cases, viruses that naturally infected mice or were engineered to enable mouse infection required mouse passage to become virulent. In most cases, changes in structural and nonstructural changes occurred during mouse adaptation. However, the mechanism of increased virulence in mice is not understood. Here, using a recently described strain of mouse-adapted SARS-CoV-2 (rSARS2-MA30
N501Y ), we engineered a series of recombinant viruses that expressed a subset of the mutations present in rSARS2-MA30N501Y . Mutations were detected in the spike protein and in three nonstructural proteins (nsp4, nsp8, and nsp9). We found that infection of mice with recombinant SARS-CoV-2 expressing only the S protein mutations caused very mild infection. Addition of the mutations in nsp4 and nsp8 was required for complete virulence. Of note, all these recombinant viruses replicated equivalently in cultured cells. The innate immune response was delayed after infection with virulent compared to attenuated viruses. Further, using a lineage tracking system, we found that attenuated virus was highly inhibited in the ability to infect the parenchyma, but not the airway after infection. Together, these results indicate that mutations in both the S protein and nonstructural proteins are required for maximal virulence during mouse adaptation.IMPORTANCEUnderstanding the pathogenesis of coronavirus disease 2019 (COVID-19) requires the study of experimental animals after infection with severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). For this purpose, several mouse-adapted SARS-CoV-2 strains have been developed. Here, using a strain of mouse-adapted virus that causes a range of diseases ranging from mild to severe, we show that mutations in both a structural protein [spike (S) protein] and nonstructural proteins are required for maximal virulence. Thus, changes in the S protein, the most widely studied viral protein, while required for mouse adaptation, are not sufficient to result in a virulent virus., Competing Interests: The authors declare no conflict of interest.- Published
- 2024
- Full Text
- View/download PDF
9. IL-13 decreases susceptibility to airway epithelial SARS-CoV-2 infection but increases disease severity in vivo.
- Author
-
Ghimire S, Xue B, Li K, Gannon RM, Wohlford-Lenane CL, Thurman AL, Gong H, Necker GC, Zheng J, Meyerholz DK, Perlman S, McCray PB Jr, and Pezzulo AA
- Abstract
Treatments available to prevent progression of virus-induced lung diseases, including coronavirus disease 2019 (COVID-19) are of limited benefit once respiratory failure occurs. The efficacy of approved and emerging cytokine signaling-modulating antibodies is variable and is affected by disease course and patient-specific inflammation patterns. Therefore, understanding the role of inflammation on the viral infectious cycle is critical for effective use of cytokine-modulating agents. We investigated the role of the type 2 cytokine IL-13 on SARS-CoV-2 binding/entry, replication, and host response in primary HAE cells in vitro and in a model of mouse-adapted SARS-CoV-2 infection in vivo. IL-13 protected airway epithelial cells from SARS-CoV-2 infection in vitro by decreasing the abundance of ACE2-expressing ciliated cells rather than by neutralization in the airway surface liquid or by interferon-mediated antiviral effects. In contrast, IL-13 worsened disease severity in mice; the effects were mediated by eicosanoid signaling and were abolished in mice deficient in the phospholipase A2 enzyme PLA2G2D. We conclude that IL-13-induced inflammation differentially affects multiple steps of COVID-19 pathogenesis. IL-13-induced inflammation may be protective against initial SARS-CoV-2 airway epithelial infection; however, it enhances disease progression in vivo. Blockade of IL-13 and/or eicosanoid signaling may be protective against progression to severe respiratory virus-induced lung disease., Competing Interests: Conflict of Interest: The authors have declared that no conflict of interest exists.
- Published
- 2024
- Full Text
- View/download PDF
10. Swine models in translational research and medicine.
- Author
-
Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, and Helke KL
- Subjects
- Animals, Swine, Humans, Transplantation, Heterologous, Swine Diseases pathology, Gene Editing, Animals, Genetically Modified, Models, Animal, Translational Research, Biomedical, Disease Models, Animal
- Abstract
Swine are increasingly studied as animal models of human disease. The anatomy, size, longevity, physiology, immune system, and metabolism of swine are more like humans than traditional rodent models. In addition, the size of swine is preferred for surgical placement and testing of medical devices destined for humans. These features make swine useful for biomedical, pharmacological, and toxicological research. With recent advances in gene-editing technologies, genetic modifications can readily and efficiently be made in swine to study genetic disorders. In addition, gene-edited swine tissues are necessary for studies testing and validating xenotransplantation into humans to meet the critical shortfall of viable organs versus need. Underlying all of these biomedical applications, the knowledge of husbandry, background diseases and lesions, and biosecurity needs are important for productive, efficient, and reproducible research when using swine as a human disease model for basic research, preclinical testing, and translational studies., Competing Interests: Declaration of Conflicting InterestsThe author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
- Published
- 2024
- Full Text
- View/download PDF
11. A predominately pulmonary activation of complement in a mouse model of severe COVID-19.
- Author
-
Szachowicz PJ, Wohlford-Lenane C, Heinen CJ, Ghimire S, Xue B, Boly TJ, Verma A, MašinoviĆ L, Bermick JR, Perlman S, Meyerholz DK, Pezzulo AA, Zhang Y, Smith RJH, and McCray PB Jr
- Abstract
Evidence from in vitro studies and observational human disease data suggest the complement system plays a significant role in SARS-CoV-2 pathogenesis, although how complement dysregulation develops in patients with severe COVID-19 is unknown. Here, using a mouse-adapted SARS-CoV-2 virus (SARS2-N501Y
MA30 ) and a mouse model of severe COVID-19, we identify significant serologic and pulmonary complement activation following infection. We observed C3 activation in airway and alveolar epithelia, and in pulmonary vascular endothelia. Our evidence suggests that while the alternative pathway is the primary route of complement activation, components of both the alternative and classical pathways are produced locally by respiratory epithelial cells following infection, and increased in primary cultures of human airway epithelia in response to cytokine exposure. This locally generated complement response appears to precede and subsequently drive lung injury and inflammation. Results from this mouse model recapitulate findings in humans, which suggest sex-specific variance in complement activation, with predilection for increased C3 activity in males, a finding that may correlate with more severe disease. Our findings indicate that complement activation is a defining feature of severe COVID-19 in mice and lay the foundation for further investigation into the role of complement in COVID-19., Competing Interests: The authors have declared that no conflict of interest exists.- Published
- 2024
- Full Text
- View/download PDF
12. NF1 +/ex42del miniswine model the cellular disruptions and behavioral presentations of NF1-associated cognitive and motor impairment.
- Author
-
Swier VJ, White KA, Negrão de Assis PL, Johnson TB, Leppert HG, Rechtzigel MJ, Meyerholz DK, Dodd RD, Quelle DE, Khanna R, Rogers CS, and Weimer JM
- Subjects
- Animals, Mice, Neurofibromin 1 genetics, Neurofibromin 1 metabolism, Behavior, Animal, Male, Hippocampus pathology, Hippocampus metabolism, Cognitive Dysfunction etiology, Cognitive Dysfunction physiopathology, Oligodendroglia metabolism, Oligodendroglia pathology, Humans, Astrocytes metabolism, Astrocytes pathology, Female, Neurofibromatosis 1 physiopathology, Neurofibromatosis 1 complications, Neurofibromatosis 1 metabolism, Disease Models, Animal
- Abstract
Cognitive or motor impairment is common among individuals with neurofibromatosis type 1 (NF1), an autosomal dominant tumor-predisposition disorder. As many as 70% of children with NF1 report difficulties with spatial/working memory, attention, executive function, and fine motor movements. In contrast to the utilization of various Nf1 mouse models, here we employ an NF1
+/ex42del miniswine model to evaluate the mechanisms and characteristics of these presentations, taking advantage of a large animal species more like human anatomy and physiology. The prefrontal lobe, anterior cingulate, and hippocampus from NF1+/ex42del and wild-type miniswine were examined longitudinally, revealing abnormalities in mature oligodendrocytes and astrocytes, and microglial activation over time. Imbalances in GABA: Glutamate ratios and GAD67 expression were observed in the hippocampus and motor cortex, supporting the role of disruption in inhibitory neurotransmission in NF1 cognitive impairment and motor dysfunction. Moreover, NF1+/ex42del miniswine demonstrated slower and shorter steps, indicative of a balance-preserving response commonly observed in NF1 patients, and progressive memory and learning impairments. Collectively, our findings affirm the effectiveness of NF1+/ex42del miniswine as a valuable resource for assessing cognitive and motor impairments associated with NF1, investigating the involvement of specific neural circuits and glia in these processes, and evaluating potential therapeutic interventions., (© 2024 The Author(s). Clinical and Translational Science published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.)- Published
- 2024
- Full Text
- View/download PDF
13. Arteriovenous metabolomics in pigs reveals CFTR regulation of metabolism in multiple organs.
- Author
-
Bae H, Kim BR, Jung S, Le J, van der Heide D, Yu W, Park SH, Hilkin BM, Gansemer ND, Powers LS, Kang T, Meyerholz DK, Schuster VL, Jang C, and Welsh MJ
- Subjects
- Animals, Swine, Kidney metabolism, Lung metabolism, Lung pathology, Humans, Glucose metabolism, Arachidonic Acid metabolism, Cystic Fibrosis Transmembrane Conductance Regulator metabolism, Cystic Fibrosis Transmembrane Conductance Regulator genetics, Cystic Fibrosis metabolism, Cystic Fibrosis pathology, Cystic Fibrosis genetics, Metabolomics
- Abstract
Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF), a multiorgan disease that is characterized by diverse metabolic defects. However, other than specific CFTR mutations, the factors that influence disease progression and severity remain poorly understood. Aberrant metabolite levels have been reported, but whether CFTR loss itself or secondary abnormalities (infection, inflammation, malnutrition, and various treatments) drive metabolic defects is uncertain. Here, we implemented comprehensive arteriovenous metabolomics in newborn CF pigs, and the results revealed CFTR as a bona fide regulator of metabolism. CFTR loss impaired metabolite exchange across organs, including disruption of lung uptake of fatty acids, yet enhancement of uptake of arachidonic acid, a precursor of proinflammatory cytokines. CFTR loss also impaired kidney reabsorption of amino acids and lactate and abolished renal glucose homeostasis. These and additional unexpected metabolic defects prior to disease manifestations reveal a fundamental role for CFTR in controlling multiorgan metabolism. Such discovery informs a basic understanding of CF, provides a foundation for future investigation, and has implications for developing therapies targeting only a single tissue.
- Published
- 2024
- Full Text
- View/download PDF
14. In utero and postnatal ivacaftor/lumacaftor therapy rescues multiorgan disease in CFTR-F508del ferrets.
- Author
-
Evans IA, Sun X, Liang B, Vegter AR, Guo L, Lynch TJ, Zhang Y, Zhang Y, Yi Y, Yang Y, Feng Z, Park SY, Shonka A, McCumber H, Qi L, Wu P, Liu G, Lacina A, Wang K, Gibson-Corley KN, Meyerholz DK, Limoli DH, Rosen BH, Yan Z, Bartels DJ, and Engelhardt JF
- Subjects
- Animals, Female, Pregnancy, Chloride Channel Agonists therapeutic use, Chloride Channel Agonists pharmacology, Disease Models, Animal, Drug Combinations, Mutation, Aminophenols therapeutic use, Aminophenols pharmacology, Aminopyridines pharmacology, Aminopyridines therapeutic use, Benzodioxoles therapeutic use, Benzodioxoles pharmacology, Cystic Fibrosis genetics, Cystic Fibrosis drug therapy, Cystic Fibrosis Transmembrane Conductance Regulator genetics, Ferrets, Quinolones pharmacology, Quinolones therapeutic use
- Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, with F508del being the most prevalent mutation. The combination of CFTR modulators (potentiator and correctors) has provided benefit to CF patients carrying the F508del mutation; however, the safety and effectiveness of in utero combination modulator therapy remains unclear. We created a F508del ferret model to test whether ivacaftor/lumacaftor (VX-770/VX-809) therapy can rescue in utero and postnatal pathologies associated with CF. Using primary intestinal organoids and air-liquid interface cultures of airway epithelia, we demonstrate that the F508del mutation in ferret CFTR results in a severe folding and trafficking defect, which can be partially restored by treatment with CFTR modulators. In utero treatment of pregnant jills with ivacaftor/lumacaftor prevented meconium ileus at birth in F508del kits and sustained postnatal treatment of CF offspring improved survival and partially protected from pancreatic insufficiency. Withdrawal of ivacaftor/lumacaftor treatment from juvenile CF ferrets reestablished pancreatic and lung diseases, with altered pulmonary mechanics. These findings suggest that in utero intervention with a combination of CFTR modulators may provide therapeutic benefits to individuals with F508del. This CFTR-F508del ferret model may be useful for testing therapies using clinically translatable endpoints.
- Published
- 2024
- Full Text
- View/download PDF
15. Pancreatic enzymes digest obstructive meconium from cystic fibrosis pig intestines.
- Author
-
Gangadharan Nambiar G, Gonzalez Szachowicz S, Zirbes CF, Hill JJ, Powers LS, Meyerholz DK, Thornell IM, Stoltz DA, and Fischer AJ
- Abstract
Introduction: Meconium ileus (MI) is a life-threatening obstruction of the intestines affecting ∼15% of newborns with cystic fibrosis (CF). Current medical treatments for MI often fail, requiring surgical intervention. MI typically occurs in newborns with pancreatic insufficiency from CF. Meconium contains mucin glycoprotein, a potential substrate for pancreatic enzymes or mucolytics. Our study aim was to determine whether pancreatic enzymes in combination with mucolytic treatments dissolve obstructive meconium using the CF pig model., Methods: We collected meconium from CF pigs at birth and submerged it in solutions with and without pancreatic enzymes, including normal saline, 7% hypertonic saline, and the reducing agents N-acetylcysteine (NAC) and dithiothreitol (DTT). We digested meconium at 37 °C with agitation, and measured meconium pigment release by spectrophotometry and residual meconium solids by filtration., Results and Discussion: In CF pigs, meconium appeared as a solid pigmented mass obstructing the ileum. Meconium microscopically contained mucus glycoprotein, cellular debris, and bile pigments. Meconium fragments released pigments with maximal absorption at 405 nm after submersion in saline over approximately 8 h. Pancreatic enzymes significantly increased pigment release and decreased residual meconium solids. DTT did not improve meconium digestion and the acidic reducing agent NAC worsened digestion. Pancreatic enzymes digested CF meconium best at neutral pH in isotonic saline. We conclude that pancreatic enzymes digest obstructive meconium from CF pigs, while hydrating or reducing agents alone were less effective. This work suggests a potential role for pancreatic enzymes in relieving obstruction due to MI in newborns with CF., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (© 2024 Gangadharan Nambiar, Gonzalez Szachowicz, Zirbes, Hill, Powers, Meyerholz, Thornell, Stoltz and Fischer.)
- Published
- 2024
- Full Text
- View/download PDF
16. Evidence of antigenic drift in the fusion machinery core of SARS-CoV-2 spike.
- Author
-
Tan TJC, Verma AK, Odle A, Lei R, Meyerholz DK, Matreyek KA, Perlman S, Wong LR, and Wu NC
- Subjects
- Humans, SARS-CoV-2 genetics, Antibodies, Spike Glycoprotein, Coronavirus genetics, Antibodies, Viral, Antigenic Drift and Shift, COVID-19
- Abstract
Antigenic drift of SARS-CoV-2 is typically defined by mutations in the N-terminal domain and receptor binding domain of spike protein. In contrast, whether antigenic drift occurs in the S2 domain remains largely elusive. Here, we perform a deep mutational scanning experiment to identify S2 mutations that affect binding of SARS-CoV-2 spike to three S2 apex public antibodies. Our results indicate that spatially diverse mutations, including D950N and Q954H, which are observed in Delta and Omicron variants, respectively, weaken the binding of spike to these antibodies. Although S2 apex antibodies are known to be nonneutralizing, we show that they confer protection in vivo through Fc-mediated effector functions. Overall, this study indicates that the S2 domain of SARS-CoV-2 spike can undergo antigenic drift, which represents a potential challenge for the development of more universal coronavirus vaccines., Competing Interests: Competing interests statement:N.C.W. serves as a consultant for HeliXon. All authors declare no other competing interests.
- Published
- 2024
- Full Text
- View/download PDF
17. Evaluation of different media compositions promoting hepatocyte differentiation in the canine liver organoid model.
- Author
-
Gabriel V, Lincoln A, Zdyrski C, Ralston A, Wickham H, Honold S, Ahmed BH, Paukner K, Feauto R, Merodio MM, Piñeyro P, Meyerholz D, Allenspach K, and Mochel JP
- Abstract
Organoids are 3-dimensional (3D) self-assembled structures capable of replicating the microanatomy and physiology of the epithelial components of their organ of origin. Adult stem cell (ASC) derived organoids from the liver have previously been shown to differentiate into primarily mature cholangiocytes, and their partial differentiation into functional hepatocytes can be promoted using specific media compositions. While full morphological differentiation of mature hepatocytes from ASCs has not yet been reported for any species, the functional differentiation can be approximated using various media compositions. Six differentiation media formulations from published studies on hepatic organoids were used for the differentiation protocol. Target species for these protocols were humans, mice, cats, and dogs, and encompassed various combinations and concentrations of four major hepatocyte media components: Bone morphogenetic protein 7 (BMP7), Fibroblast Growth Factor 19 (FGF19), Dexamethasone (Dex), and Gamma-Secretase Inhibitor IX (DAPT). Additionally, removing R-spondin from basic organoid media has previously been shown to drive the differentiation of ASC into mature hepatocytes. Differentiation media (N = 20) were designed to encompass combinations of the four major hepatocyte media components. The preferred differentiation of ASC-derived organoids from liver tissue into mature hepatocytes over cholangiocytes was confirmed by albumin production in the culture supernatant. Out of the twenty media compositions tested, six media resulted in the production of the highest amounts of albumin in the supernatant of the organoids. The cell lines cultured using these six media were further characterized via histological staining, transmission electron microscopy, RNA in situ hybridization, analysis of gene expression patterns, immunofluorescence, and label-free proteomics. The results indicate that preferential hepatocyte maturation from canine ADC-derived organoids from liver tissue is mainly driven by Dexamethasone and DAPT components. FGF19 did not enhance organoid differentiation but improved cell culture survival. Furthermore, we confirm that removing R-spondin from the media is crucial for establishing mature hepatic organoid cultures., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2024 The Authors.)
- Published
- 2024
- Full Text
- View/download PDF
18. Establishment and characterization of turtle liver organoids provides a potential model to decode their unique adaptations.
- Author
-
Zdyrski C, Gabriel V, Gessler TB, Ralston A, Sifuentes-Romero I, Kundu D, Honold S, Wickham H, Topping NE, Sahoo DK, Bista B, Tamplin J, Ospina O, Piñeyro P, Arriaga M, Galan JA, Meyerholz DK, Allenspach K, Mochel JP, and Valenzuela N
- Subjects
- Animals, Genome, Hypoxia genetics, Proteomics, Liver, Turtles physiology, Organoids physiology
- Abstract
Painted turtles are remarkable for their freeze tolerance and supercooling ability along with their associated resilience to hypoxia/anoxia and oxidative stress, rendering them an ideal biomedical model for hypoxia-induced injuries (including strokes), tissue cooling during surgeries, and organ cryopreservation. Yet, such research is hindered by their seasonal reproduction and slow maturation. Here we developed and characterized adult stem cell-derived turtle liver organoids (3D self-assembled in vitro structures) from painted, snapping, and spiny softshell turtles spanning ~175My of evolution, with a subset cryopreserved. This development is, to the best of our knowledge, a first for this vertebrate Order, and complements the only other non-avian reptile organoids from snake venom glands. Preliminary characterization, including morphological, transcriptomic, and proteomic analyses, revealed organoids enriched in cholangiocytes. Deriving organoids from distant turtles and life stages demonstrates that our techniques are broadly applicable to chelonians, permitting the development of functional genomic tools currently lacking in herpetological research. Such platform could potentially support studies including genome-to-phenome mapping, gene function, genome architecture, and adaptive responses to climate change, with implications for ecological, evolutionary, and biomedical research., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF
19. Defining Parameters That Modulate Susceptibility and Protection to Respiratory Murine Coronavirus MHV1 Infection.
- Author
-
Silva EE, Moioffer SJ, Hassert M, Berton RR, Smith MG, van de Wall S, Meyerholz DK, Griffith TS, Harty JT, and Badovinac VP
- Subjects
- Humans, Mice, Animals, Mice, Inbred C57BL, Mice, Inbred C3H, Mice, Inbred Strains, Genetic Predisposition to Disease, Murine hepatitis virus, Sepsis
- Abstract
Patients infected with SARS-CoV-2 experience variable disease susceptibility, and patients with comorbidities such as sepsis are often hospitalized for COVID-19 complications. However, the extent to which initial infectious inoculum dose determines disease outcomes and whether this can be used for immunological priming in a genetically susceptible host has not been completely defined. We used an established SARS-like murine model in which responses to primary and/or secondary challenges with murine hepatitis virus type 1 (MHV-1) were analyzed. We compared the response to infection in genetically susceptible C3H/HeJ mice, genetically resistant C57BL/6J mice, and genetically diverse, variably susceptible outbred Swiss Webster mice. Although defined as genetically susceptible to MHV-1, C3H/HeJ mice displayed decreasing dose-dependent pathological changes in disease severity and lung infiltrate/edema, as well as lymphopenia. Importantly, an asymptomatic dose (500 PFU) was identified that yielded no measurable morbidity/mortality postinfection in C3H/HeJ mice. Polymicrobial sepsis induced via cecal ligation and puncture converted asymptomatic infections in C3H/HeJ and C57BL/6J mice to more pronounced disease, modeling the impact of sepsis as a comorbidity to β-coronavirus infection. We then used low-dose infection as an immunological priming event in C3H/HeJ mice, which provided neutralizing Ab-dependent, but not circulating CD4/CD8 T cell-dependent, protection against a high-dose MHV-1 early rechallenge. Together, these data define how infection dose, immunological status, and comorbidities modulate outcomes of primary and secondary β-coronavirus infections in hosts with variable susceptibility., (Copyright © 2024 by The American Association of Immunologists, Inc.)
- Published
- 2024
- Full Text
- View/download PDF
20. Potent 3CLpro inhibitors effective against SARS-CoV-2 and MERS-CoV in animal models by therapeutic treatment.
- Author
-
Li P, Kim Y, Dampalla CS, Nhat Nguyen H, Meyerholz DK, Johnson DK, Lovell S, Groutas WC, Perlman S, and Chang K-O
- Subjects
- Humans, Mice, Animals, SARS-CoV-2, Antiviral Agents pharmacology, Antiviral Agents therapeutic use, Disease Models, Animal, Middle East Respiratory Syndrome Coronavirus, COVID-19, Hepatitis C, Chronic
- Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic betacoronaviruses that continue to have a significant impact on public health. Timely development and introduction of vaccines and antivirals against SARS-CoV-2 into the clinic have substantially mitigated the burden of COVID-19. However, a limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections, respectively, calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. In this report, we examined the efficacy of two potent 3CLpro inhibitors, 5d and 11d , in fatal animal models of SARS-CoV-2 and MERS-CoV to demonstrate their broad-spectrum activity against both viral infections. These compounds significantly increased the survival of mice in both models when treatment started 1 day post infection compared to no treatment which led to 100% fatality. Especially, the treatment with compound 11d resulted in 80% and 90% survival in SARS-CoV-2 and MERS-CoV-infected mice, respectively. Amelioration of lung viral load and histopathological changes in treated mice correlated well with improved survival in both infection models. Furthermore, compound 11d exhibited significant antiviral activities in K18-hACE2 mice infected with SARS-CoV-2 Omicron subvariant XBB.1.16. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses.IMPORTANCEHuman coronaviruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV) continue to have a significant impact on public health. A limited or lacking therapeutic arsenal for SARS-CoV-2 and MERS-CoV infections calls for an expanded and diversified portfolio of antivirals against these coronavirus infections. We have previously reported a series of small-molecule 3C-like protease (3CLpro) inhibitors against human coronaviruses. In this report, we demonstrated the in vivo efficacy of 3CLpro inhibitors for their broad-spectrum activity against both SARS-CoV-2 and MERS-CoV infections using the fatal animal models. The results suggest that these are promising candidates for further development as broad-spectrum direct-acting antivirals against highly virulent human coronaviruses., Competing Interests: The authors declare no conflict of interest.
- Published
- 2024
- Full Text
- View/download PDF
21. Adaptation of SARS-CoV-2 to ACE2 H353K mice reveals new spike residues that drive mouse infection.
- Author
-
Li K, Verma A, Li P, Ortiz ME, Hawkins GM, Schnicker NJ, Szachowicz PJ, Pezzulo AA, Wohlford-Lenane CL, Kicmal T, Meyerholz DK, Gallagher T, Perlman S, and McCray PB Jr
- Subjects
- Animals, Humans, Mice, 5' Untranslated Regions, Disease Models, Animal, Mice, Inbred C57BL, Nucleotides, Peptidyl-Dipeptidase A metabolism, Angiotensin-Converting Enzyme 2 genetics, COVID-19 genetics, SARS-CoV-2 genetics, SARS-CoV-2 metabolism, Spike Glycoprotein, Coronavirus chemistry, Spike Glycoprotein, Coronavirus genetics, Spike Glycoprotein, Coronavirus metabolism
- Abstract
The Coronavirus Disease 2019 (COVID-19) pandemic continues to cause extraordinary loss of life and economic damage. Animal models of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection are needed to better understand disease pathogenesis and evaluate preventive measures and therapies. While mice are widely used to model human disease, mouse angiotensin converting enzyme 2 (ACE2) does not bind the ancestral SARS-CoV-2 spike protein to mediate viral entry. To overcome this limitation, we "humanized" mouse Ace2 using CRISPR gene editing to introduce a single amino acid substitution, H353K, predicted to facilitate S protein binding. While H353K knockin Ace2 (mACE2
H353K ) mice supported SARS-CoV-2 infection and replication, they exhibited minimal disease manifestations. Following 30 serial passages of ancestral SARS-CoV-2 in mACE2H353K mice, we generated and cloned a more virulent virus. A single isolate (SARS2MA-H353K ) was prepared for detailed studies. In 7-11-month-old mACE2H353K mice, a 104 PFU inocula resulted in diffuse alveolar disease manifested as edema, hyaline membrane formation, and interstitial cellular infiltration/thickening. Unexpectedly, the mouse-adapted virus also infected standard BALB/c and C57BL/6 mice and caused severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions.IMPORTANCEWe developed a new mouse model with a humanized angiotensin converting enzyme 2 (ACE2) locus that preserves native regulatory elements. A single point mutation in mouse ACE2 (H353K) was sufficient to confer in vivo infection with ancestral severe acute respiratory syndrome-coronavirus-2 virus. Through in vivo serial passage, a virulent mouse-adapted strain was obtained. In aged mACE2H353K mice, the mouse-adapted strain caused diffuse alveolar disease. The mouse-adapted virus also infected standard BALB/c and C57BL/6 mice, causing severe disease. The mouse-adapted virus acquired five new missense mutations including two in spike (K417E, Q493K), one each in nsp4, nsp9, and M and a single nucleotide change in the 5' untranslated region. The Q493K spike mutation arose early in serial passage and is predicted to provide affinity-enhancing molecular interactions with mACE2 and further increase the stability and affinity to the receptor. This new model and mouse-adapted virus will be useful to evaluate COVID-19 disease and prophylactic and therapeutic interventions., Competing Interests: The authors declare no conflict of interest.- Published
- 2024
- Full Text
- View/download PDF
22. Adult Animal Stem Cell-Derived Organoids in Biomedical Research and the One Health Paradigm.
- Author
-
Gabriel V, Zdyrski C, Sahoo DK, Ralston A, Wickham H, Bourgois-Mochel A, Ahmed B, Merodio MM, Paukner K, Piñeyro P, Kopper J, Rowe EW, Smith JD, Meyerholz D, Kol A, Viall A, Elbadawy M, Mochel JP, and Allenspach K
- Subjects
- Adult, Humans, Animals, Mice, Translational Research, Biomedical, Organoids, One Health, Biomedical Research, Adult Stem Cells
- Abstract
Preclinical biomedical research is limited by the predictiveness of in vivo and in vitro models. While in vivo models offer the most complex system for experimentation, they are also limited by ethical, financial, and experimental constraints. In vitro models are simplified models that do not offer the same complexity as living animals but do offer financial affordability and more experimental freedom; therefore, they are commonly used. Traditional 2D cell lines cannot fully simulate the complexity of the epithelium of healthy organs and limit scientific progress. The One Health Initiative was established to consolidate human, animal, and environmental health while also tackling complex and multifactorial medical problems. Reverse translational research allows for the sharing of knowledge between clinical research in veterinary and human medicine. Recently, organoid technology has been developed to mimic the original organ's epithelial microstructure and function more reliably. While human and murine organoids are available, numerous other organoids have been derived from traditional veterinary animals and exotic species in the last decade. With these additional organoid models, species previously excluded from in vitro research are becoming accessible, therefore unlocking potential translational and reverse translational applications of animals with unique adaptations that overcome common problems in veterinary and human medicine.
- Published
- 2024
- Full Text
- View/download PDF
23. Contrasting roles of MERS-CoV and SARS-CoV-2 internal proteins in pathogenesis in mice.
- Author
-
Wong L-YR, Odle A, Luhmann E, Wu DC, Wang Y, Teo QW, Ptak C, Sariol A, Lowery S, Mack M, Meyerholz DK, Wu NC, Radoshevich L, and Perlman S
- Subjects
- Animals, Mice, Virulence, COVID-19 virology, COVID-19 immunology, Humans, Viral Proteins genetics, Viral Proteins metabolism, Virus Replication, Disease Models, Animal, Female, SARS-CoV-2 pathogenicity, SARS-CoV-2 genetics, Middle East Respiratory Syndrome Coronavirus genetics, Middle East Respiratory Syndrome Coronavirus pathogenicity, Coronavirus Infections virology, Coronavirus Infections immunology
- Abstract
Importance: The function of betacoronavirus internal protein has been relatively understudied. The earliest report on the internal protein of mouse hepatitis virus suggested that the internal protein is a structural protein without significant functions in virus replication and virulence. However, the internal proteins of s evere a cute r espiratory s yndrome c oronavirus (SARS-CoV), Middle-East respiratory syndrome coronavirus, and SARS-CoV-2 have been shown to evade immune responses. Despite the reported functions of the internal protein in these highly pathogenic human coronaviruses, its role in mediating pathogenesis in experimentally infected animals has not been characterized. Our data indicated that despite the similar genomic location and expression strategy of these internal proteins, their effects on virulence are vastly different and virus specific, highlighting the complexity between host-virus interaction and disease outcome., Competing Interests: N.C.W. consults for HeliXon. The authors have no other competing interests, financial or non-financial.
- Published
- 2023
- Full Text
- View/download PDF
24. Recently activated CD4 T cells in tuberculosis express OX40 as a target for host-directed immunotherapy.
- Author
-
Gress AR, Ronayne CE, Thiede JM, Meyerholz DK, Okurut S, Stumpf J, Mathes TV, Ssebambulidde K, Meya DB, Cresswell FV, Boulware DR, and Bold TD
- Subjects
- Humans, Mice, Animals, Receptors, OX40 agonists, CD8-Positive T-Lymphocytes, Immunotherapy, CD4-Positive T-Lymphocytes, Tuberculosis therapy
- Abstract
After Mycobacterium tuberculosis (Mtb) infection, many effector T cells traffic to the lungs, but few become activated. Here we use an antigen receptor reporter mouse (Nur77-GFP) to identify recently activated CD4 T cells in the lungs. These Nur77-GFP
HI cells contain expanded TCR clonotypes, have elevated expression of co-stimulatory genes such as Tnfrsf4/OX40, and are functionally more protective than Nur77-GFPLO cells. By contrast, Nur77-GFPLO cells express markers of terminal exhaustion and cytotoxicity, and the trafficking receptor S1pr5, associated with vascular localization. A short course of immunotherapy targeting OX40+ cells transiently expands CD4 T cell numbers and shifts their phenotype towards parenchymal protective cells. Moreover, OX40 agonist immunotherapy decreases the lung bacterial burden and extends host survival, offering an additive benefit to antibiotics. CD4 T cells from the cerebrospinal fluid of humans with HIV-associated tuberculous meningitis commonly express surface OX40 protein, while CD8 T cells do not. Our data thus propose OX40 as a marker of recently activated CD4 T cells at the infection site and a potential target for immunotherapy in tuberculosis., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
25. Shuttle peptide delivers base editor RNPs to rhesus monkey airway epithelial cells in vivo.
- Author
-
Kulhankova K, Traore S, Cheng X, Benk-Fortin H, Hallée S, Harvey M, Roberge J, Couture F, Kohli S, Gross TJ, Meyerholz DK, Rettig GR, Thommandru B, Kurgan G, Wohlford-Lenane C, Hartigan-O'Connor DJ, Yates BP, Newby GA, Liu DR, Tarantal AF, Guay D, and McCray PB Jr
- Subjects
- Animals, Humans, Mice, Macaca mulatta metabolism, Respiratory Mucosa metabolism, Ribonucleoproteins metabolism, Peptides genetics, CRISPR-Cas Systems, Cystic Fibrosis Transmembrane Conductance Regulator genetics, Cystic Fibrosis Transmembrane Conductance Regulator metabolism, Epithelial Cells metabolism
- Abstract
Gene editing strategies for cystic fibrosis are challenged by the complex barrier properties of airway epithelia. We previously reported that the amphiphilic S10 shuttle peptide non-covalently combined with CRISPR-associated (Cas) ribonucleoprotein (RNP) enabled editing of human and mouse airway epithelial cells. Here, we derive the S315 peptide as an improvement over S10 in delivering base editor RNP. Following intratracheal aerosol delivery of Cy5-labeled peptide in rhesus macaques, we confirm delivery throughout the respiratory tract. Subsequently, we target CCR5 with co-administration of ABE8e-Cas9 RNP and S315. We achieve editing efficiencies of up-to 5.3% in rhesus airway epithelia. Moreover, we document persistence of edited epithelia for up to 12 months in mice. Finally, delivery of ABE8e-Cas9 targeting the CFTR R553X mutation restores anion channel function in cultured human airway epithelia. These results demonstrate the therapeutic potential of base editor delivery with S315 to functionally correct the CFTR R553X mutation in respiratory epithelia., (© 2023. The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
26. Cells that survive acute murine SARS-CoV-2 infection are detected nearly exclusively in the respiratory tract.
- Author
-
Pan R, Meyerholz DK, and Perlman S
- Subjects
- Animals, Mice, SARS-CoV-2, Respiratory System, Virus Replication, COVID-19
- Published
- 2023
- Full Text
- View/download PDF
27. CFTR-rich ionocytes mediate chloride absorption across airway epithelia.
- Author
-
Lei L, Traore S, Romano Ibarra GS, Karp PH, Rehman T, Meyerholz DK, Zabner J, Stoltz DA, Sinn PL, Welsh MJ, McCray PB Jr, and Thornell IM
- Subjects
- Humans, Chlorides metabolism, Epithelial Cells metabolism, Epithelium metabolism, Lung metabolism, Chloride Channels metabolism, Cystic Fibrosis genetics, Cystic Fibrosis metabolism, Cystic Fibrosis Transmembrane Conductance Regulator genetics, Cystic Fibrosis Transmembrane Conductance Regulator metabolism
- Abstract
The volume and composition of a thin layer of liquid covering the airway surface defend the lung from inhaled pathogens and debris. Airway epithelia secrete Cl- into the airway surface liquid through cystic fibrosis transmembrane conductance regulator (CFTR) channels, thereby increasing the volume of airway surface liquid. The discovery that pulmonary ionocytes contain high levels of CFTR led us to predict that ionocytes drive secretion. However, we found the opposite. Elevating ionocyte abundance increased liquid absorption, whereas reducing ionocyte abundance increased secretion. In contrast to other airway epithelial cells, ionocytes contained barttin/Cl- channels in their basolateral membrane. Disrupting barttin/Cl- channel function impaired liquid absorption, and overexpressing barttin/Cl- channels increased absorption. Together, apical CFTR and basolateral barttin/Cl- channels provide an electrically conductive pathway for Cl- flow through ionocytes, and the transepithelial voltage generated by apical Na+ channels drives absorption. These findings indicate that ionocytes mediate liquid absorption, and secretory cells mediate liquid secretion. Segregating these counteracting activities to distinct cell types enables epithelia to precisely control the airway surface. Moreover, the divergent role of CFTR in ionocytes and secretory cells suggests that cystic fibrosis disrupts both liquid secretion and absorption.
- Published
- 2023
- Full Text
- View/download PDF
28. Transgenic ferret models define pulmonary ionocyte diversity and function.
- Author
-
Yuan F, Gasser GN, Lemire E, Montoro DT, Jagadeesh K, Zhang Y, Duan Y, Ievlev V, Wells KL, Rotti PG, Shahin W, Winter M, Rosen BH, Evans I, Cai Q, Yu M, Walsh SA, Acevedo MR, Pandya DN, Akurathi V, Dick DW, Wadas TJ, Joo NS, Wine JJ, Birket S, Fernandez CM, Leung HM, Tearney GJ, Verkman AS, Haggie PM, Scott K, Bartels D, Meyerholz DK, Rowe SM, Liu X, Yan Z, Haber AL, Sun X, and Engelhardt JF
- Subjects
- Animals, Humans, Animals, Genetically Modified, Cell Lineage, Cystic Fibrosis Transmembrane Conductance Regulator genetics, Cystic Fibrosis Transmembrane Conductance Regulator metabolism, Forkhead Transcription Factors genetics, Forkhead Transcription Factors metabolism, Trachea cytology, Cystic Fibrosis genetics, Cystic Fibrosis metabolism, Cystic Fibrosis pathology, Disease Models, Animal, Ferrets genetics, Ferrets physiology, Lung cytology, Lung metabolism, Lung pathology, Transgenes genetics
- Abstract
Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans
1,2 , but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-CreERT2 ::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-CreERT2 ::CFTRL/L ). By comparing these models with cystic fibrosis ferrets3,4 , we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity-leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-CreERT2 ::CFTRL/L ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl- and HCO3 - . Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
29. CDK4/6-MEK Inhibition in MPNSTs Causes Plasma Cell Infiltration, Sensitization to PD-L1 Blockade, and Tumor Regression.
- Author
-
Kohlmeyer JL, Lingo JJ, Kaemmer CA, Scherer A, Warrier A, Voigt E, Raygoza Garay JA, McGivney GR, Brockman QR, Tang A, Calizo A, Pollard K, Zhang X, Hirbe AC, Pratilas CA, Leidinger M, Breheny P, Chimenti MS, Sieren JC, Monga V, Tanas MR, Meyerholz DK, Darbro BW, Dodd RD, and Quelle DE
- Subjects
- Mice, Humans, Animals, Plasma Cells metabolism, Protein Kinase Inhibitors pharmacology, Protein Kinase Inhibitors therapeutic use, Mitogen-Activated Protein Kinase Kinases, Cell Line, Tumor, Tumor Microenvironment, Cyclin-Dependent Kinase 4, Neurofibrosarcoma drug therapy
- Abstract
Purpose: Malignant peripheral nerve sheath tumors (MPNST) are lethal, Ras-driven sarcomas that lack effective therapies. We investigated effects of targeting cyclin-dependent kinases 4 and 6 (CDK4/6), MEK, and/or programmed death-ligand 1 (PD-L1) in preclinical MPNST models., Experimental Design: Patient-matched MPNSTs and precursor lesions were examined by FISH, RNA sequencing, IHC, and Connectivity-Map analyses. Antitumor activity of CDK4/6 and MEK inhibitors was measured in MPNST cell lines, patient-derived xenografts (PDX), and de novo mouse MPNSTs, with the latter used to determine anti-PD-L1 response., Results: Patient tumor analyses identified CDK4/6 and MEK as actionable targets for MPNST therapy. Low-dose combinations of CDK4/6 and MEK inhibitors synergistically reactivated the retinoblastoma (RB1) tumor suppressor, induced cell death, and decreased clonogenic survival of MPNST cells. In immune-deficient mice, dual CDK4/6-MEK inhibition slowed tumor growth in 4 of 5 MPNST PDXs. In immunocompetent mice, combination therapy of de novo MPNSTs caused tumor regression, delayed resistant tumor outgrowth, and improved survival relative to monotherapies. Drug-sensitive tumors that regressed contained plasma cells and increased cytotoxic T cells, whereas drug-resistant tumors adopted an immunosuppressive microenvironment with elevated MHC II-low macrophages and increased tumor cell PD-L1 expression. Excitingly, CDK4/6-MEK inhibition sensitized MPNSTs to anti-PD-L1 immune checkpoint blockade (ICB) with some mice showing complete tumor regression., Conclusions: CDK4/6-MEK inhibition induces a novel plasma cell-associated immune response and extended antitumor activity in MPNSTs, which dramatically enhances anti-PD-L1 therapy. These preclinical findings provide strong rationale for clinical translation of CDK4/6-MEK-ICB targeted therapies in MPNST as they may yield sustained antitumor responses and improved patient outcomes., (©2023 American Association for Cancer Research.)
- Published
- 2023
- Full Text
- View/download PDF
30. Immunomodulatory Effects of Subacute Inhalation Exposure to Copper Oxide Nanoparticles in House Dust Mite-Induced Asthma.
- Author
-
Areecheewakul S, Adamcakova-Dodd A, Zacharias ZR, Jing X, Meyerholz DK, Legge KL, Houtman JCD, O'Shaughnessy PT, Thorne PS, and Salem AK
- Subjects
- Female, Mice, Animals, Copper, Inhalation Exposure, Pyroglyphidae, Immunity, Oxides, Asthma chemically induced, Asthma therapy, Nanoparticles
- Abstract
It has been shown that inhalation exposure to copper oxide nanoparticles (CuO NPs) results in pulmonary inflammation. However, immunomodulatory consequences after CuO NP inhalation exposure have been less explored. We tested the effect of CuO NP aerosols on immune responses in healthy, house dust mite (HDM) asthmatic, or allergen immunotherapy (AIT)-treated asthmatic mice (BALB/c, females). The AIT consisted of a vaccine comprising HDM allergens and CpG-loaded nanoparticles (CpG NPs). AIT treatment involved mice being immunized (via subcutaneous (sc) injection; 2 doses) while concomitantly being exposed to CuO NP aerosols (over a 2 week period), starting on the day of the first vaccination. Mice were then sensitized twice by sc injection and subsequently challenged with HDM extract 10 times by intranasal instillation. The asthmatic model followed the same timeline except that no immunizations were administered. All mice were necropsied 24 h after the end of the HDM challenge. CuO NP-exposed healthy mice showed a significant decrease in T
H 1 and TH 2 cells, and an elevation in T-bet+ Treg cells, even 40 days after the last exposure to CuO NPs. Similarly, the CuO NP-exposed HDM asthma model demonstrated decreased TH 2 responses and increased T-bet+ Treg cells. Conversely, CuO NP inhalation exposure to AIT-treated asthmatic mice resulted in an increase in TH 2 cells. In conclusion, immunomodulatory effects of inhalation exposure to CuO NPs are dependent on immune conditions prior to exposure.- Published
- 2023
- Full Text
- View/download PDF
31. Nsp3-N interactions are critical for SARS-CoV-2 fitness and virulence.
- Author
-
Li P, Xue B, Schnicker NJ, Wong LR, Meyerholz DK, and Perlman S
- Subjects
- Humans, Animals, Mice, SARS-CoV-2, Virulence, Mutation, COVID-19, Severe acute respiratory syndrome-related coronavirus
- Abstract
SARS-CoV-2, the causative agent of COVID-19 encodes at least 16 nonstructural proteins of variably understood function. Nsp3, the largest nonstructural protein contains several domains, including a SARS-unique domain (SUD), which occurs only in Sarbecovirus . The SUD has a role in preferentially enhancing viral translation. During isolation of mouse-adapted SARS-CoV-2, we isolated an attenuated virus that contained a single mutation in a linker region of nsp3 (nsp3-S676T). The S676T mutation decreased virus replication in cultured cells and primary human cells and in mice. Nsp3-S676T alleviated the SUD translational enhancing ability by decreasing the interaction between two translation factors, Paip1 and PABP1. We also identified a compensatory mutation in the nucleocapsid (N) protein (N-S194L) that restored the virulent phenotype, without directly binding to SUD. Together, these results reveal an aspect of nsp3-N interactions, which impact both SARS-CoV-2 replication and, consequently, pathogenesis.
- Published
- 2023
- Full Text
- View/download PDF
32. Selective androgen receptor modulator microparticle formulation reverses muscle hyperalgesia in a mouse model of widespread muscle pain.
- Author
-
Lesnak JB, Nakhla DS, Plumb AN, McMillan A, Saha S, Gupta N, Xu Y, Phruttiwanichakun P, Rasmussen L, Meyerholz DK, Salem AK, and Sluka KA
- Subjects
- Mice, Animals, Male, Female, Flutamide pharmacology, Flutamide therapeutic use, Myalgia chemically induced, Myalgia drug therapy, Hyperalgesia drug therapy, Quality of Life, Mice, Inbred C57BL, Muscles, Testosterone, Androgens pharmacology, Androgens therapeutic use, Receptors, Androgen, Chronic Pain
- Abstract
Abstract: Chronic pain is a significant health problem associated with disability and reduced quality of life. Current management of chronic pain is inadequate with only modest effects of pharmacological interventions. Thus, there is a need for the generation of analgesics for treating chronic pain. Although preclinical and clinical studies demonstrate the analgesic effects of testosterone, clinical use of testosterone is limited by adverse androgenic effects. Selective androgen receptor modulators (SARMs) activate androgen receptors and overcome treatment limitations by minimizing androgenic side effects. Thus, we tested whether daily soluble SARMs or a SARM-loaded microparticle formulation alleviated muscle hyperalgesia in a mouse-model of widespread pain (male and female C57BL/6J mice). We tested whether the analgesic effects of the SARM-loaded microparticle formulation was mediated through androgen receptors by blocking androgen receptors with flutamide pellets. In vitro and in vivo release kinetics were determined for SARM-loaded microparticles. Safety and toxicity of SARM treatment was determined using serum cardiac and liver toxicity panels, heart histology, and conditioned place preference testing. Subcutaneous daily SARM administration, and 2 injections, 1 week apart, of SARM-loaded microparticles alleviated muscle hyperalgesia in both sexes and was prevented with flutamide treatment. Sustained release of SARM, from the microparticle formulation, was observed both in vitro and in vivo for 4 weeks. Selective androgen receptor modulator treatment produced no cardiac or liver toxicity and did not produce rewarding behaviors. These studies demonstrate that SARM-loaded microparticles, which release drug for a sustained period, alleviate muscle pain, are safe, and may serve as a potential therapeutic for chronic muscle pain., (Copyright © 2023 International Association for the Study of Pain.)
- Published
- 2023
- Full Text
- View/download PDF
33. Changes of Enterocyte Morphology and Enterocyte: Goblet Cell Ratios in Dogs with Protein-Losing and Non-Protein-Losing Chronic Enteropathies.
- Author
-
Díaz-Regañón D, Gabriel V, Livania V, Liu D, Ahmed BH, Lincoln A, Wickham H, Ralston A, Merodio MM, Sahoo DK, Zdyrski C, Meyerholz DK, Mochel JP, and Allenspach K
- Abstract
This study aimed to assess the morphometry of enterocytes as well as the goblet cell-to-enterocyte ratio in different intestinal segments of dogs with chronic enteropathies (CE). Histopathological intestinal samples from 97 dogs were included in the study (19 healthy juveniles, 21 healthy adults, 24 dogs with protein-losing enteropathy (PLE), and 33 CE dogs without PLE). Healthy adult small intestinal enterocytes showed progressively reduced epithelial cell height in the aboral direction, while juvenile dogs showed progressively increased epithelial cell height in the aboral direction. CE dogs had increased epithelial cell height in the duodenum, while PLE dogs had decreased epithelial cell heights compared to healthy adult dogs. Both the CE and PLE dogs showed decreased enterocyte width in the duodenal segment, and the ileal and colonic enterocytes of CE dogs were narrower than those of healthy adult dogs. CE dogs had a lower goblet cell-to-enterocyte ratio in the colon segment compared to healthy dogs. This study provides valuable morphometric information on enterocytes during canine chronic enteropathies, highlighting significant morphological enterocyte alterations, particularly in the small intestine, as well as a reduced goblet cell-to-enterocyte ratio in the colon of CE cases compared to healthy adult dogs.
- Published
- 2023
- Full Text
- View/download PDF
34. Immunohistochemical detection of MUC5AC and MUC5B mucins in ferrets.
- Author
-
Meyerholz DK, Leidinger MR, Adam Goeken J, Businga TR, Vizuett S, Akers A, Evans I, Zhang Y, and Engelhardt JF
- Subjects
- Animals, Humans, Lung metabolism, Respiratory Mucosa metabolism, Thorax, Mucin-5B metabolism, Mucin 5AC metabolism, Ferrets, Cystic Fibrosis
- Abstract
Objective: Cystic fibrosis (CF) is a genetic condition that causes abnormal mucus secretions in affected organs. MUC5AC and MUC5B are gel-forming mucins and frequent targets for investigations in CF tissues. Our objective was to qualify MUC5AC and MUC5B immunohistochemical techniques to provide a useful tool to identify, localize and interpret mucin expression in ferret tissues., Results: MUC5AC and MUC5B mucins were detected most commonly in large airways and least in small airways, consistent with reported goblet cell density in airway surface epithelia. We evaluated whether staining method affected the detection of goblet cell mucins in serial sections of bronchial surface epithelia. Significant differences between stains were not observed suggesting common co-expression MUC5AC and MUC5B proteins in goblet cells of airway surface epithelia. Gallbladder and stomach tissues are reported to have differential mucin enrichment, so we tested these tissues in wildtype ferrets. Stomach tissues were enriched in MUC5AC and gallbladder tissues enriched in MUC5B, mucin enrichment similar to human tissues. Mucin immunostaining techniques were further qualified for specificity using lung tissue from recently generated MUC5AC
-/- and MUC5B-/- ferrets. Qualified techniques for MUC5AC and MUC5B immunohistochemistry will be useful tools for mucin tissue studies in CF and other ferret models., (© 2023. The Author(s).)- Published
- 2023
- Full Text
- View/download PDF
35. DNA demethylation fine-tunes IL-2 production during thymic regulatory T cell differentiation.
- Author
-
Teghanemt A, Misel-Wuchter K, Heath J, Thurman A, Pulipati P, Dixit G, Geesala R, Meyerholz DK, Maretzky T, Pezzulo A, and Issuree PD
- Subjects
- Humans, Mice, Animals, Thymus Gland, T-Lymphocytes, Regulatory, Receptors, Antigen, T-Cell metabolism, Cell Differentiation, Forkhead Transcription Factors metabolism, Interleukin-2, DNA Demethylation
- Abstract
Regulatory T (T reg) cells developing in the thymus are essential to maintain tolerance and prevent fatal autoimmunity in mice and humans. Expression of the T reg lineage-defining transcription factor FoxP3 is critically dependent upon T cell receptor (TCR) and interleukin-2 (IL-2) signaling. Here, we report that ten-eleven translocation (Tet) enzymes, which are DNA demethylases, are required early during double-positive (DP) thymic T cell differentiation and prior to the upregulation of FoxP3 in CD4 single-positive (SP) thymocytes, to promote Treg differentiation. We show that Tet3 selectively controls the development of CD25
- FoxP3lo CD4SP Treg cell precursors in the thymus and is critical for TCR-dependent IL-2 production, which drive chromatin remodeling at the FoxP3 locus as well as other Treg-effector gene loci in an autocrine/paracrine manner. Together, our results demonstrate a novel role for DNA demethylation in regulating the TCR response and promoting Treg cell differentiation. These findings highlight a novel epigenetic pathway to promote the generation of endogenous Treg cells for mitigation of autoimmune responses., (© 2023 The Authors. Published under the terms of the CC BY NC ND 4.0 license.)- Published
- 2023
- Full Text
- View/download PDF
36. Commotio Cordis and One Medicine.
- Author
-
Meyerholz DK
- Subjects
- Animals, Death, Sudden, Cardiac veterinary, Commotio Cordis veterinary, Wounds, Nonpenetrating veterinary, Thoracic Injuries veterinary
- Published
- 2023
- Full Text
- View/download PDF
37. Concerns about pathology expertise and data quality.
- Author
-
McInnes EF, Meyerholz DK, and Arends MJ
- Subjects
- Data Accuracy, Pathology
- Published
- 2023
- Full Text
- View/download PDF
38. CD47 halts Ptpn6 -deficient neutrophils from provoking lethal inflammation.
- Author
-
Mazgaeen L, Yorek M, Saini S, Vogel P, Meyerholz DK, Kanneganti TD, and Gurung P
- Subjects
- Animals, Mice, Inflammation metabolism, Protein Tyrosine Phosphatase, Non-Receptor Type 6 genetics, Protein Tyrosine Phosphatase, Non-Receptor Type 6 metabolism, Neutrophils metabolism, CD47 Antigen genetics
- Abstract
Mice with SHP1 proteins, which have a single amino acid substitution from tyrosine-208 residue to asparagine (hereafter Ptpn6
spin mice), develop an autoinflammatory disease with inflamed footpads. Genetic crosses to study CD47 function in Ptpn6spin mice bred Ptpn6spin × Cd47-/- mice that were not born at the expected Mendelian ratio. Ptpn6spin bone marrow cells, when transferred into lethally irradiated Cd47 -deficient mice, caused marked weight loss and subsequent death. At a cellular level, Ptpn6 -deficient neutrophils promoted weight loss and death of the lethally irradiated Cd47-/- recipients. We posited that leakage of gut microbiota promotes morbidity and mortality in Cd47-/- mice receiving Ptpn6spin cells. Colonic cell death and gut leakage were substantially increased in the diseased Cd47-/- mice. Last, IL-1 blockade using anakinra rescued the morbidity and mortality observed in the diseased Cd47-/- mice. These data together demonstrate a protective role for CD47 in tempering pathogenic neutrophils in the Ptpn6spin mice.- Published
- 2023
- Full Text
- View/download PDF
39. Rigid respiration: fulminant pulmonary fibrosis after COVID-19.
- Author
-
Meyerholz DK
- Subjects
- Humans, Lung diagnostic imaging, Lung pathology, Respiration, Pulmonary Fibrosis diagnosis, Pulmonary Fibrosis etiology, Pulmonary Fibrosis pathology, COVID-19 pathology
- Abstract
Competing Interests: Declaration of interests Author declares no competing interests. DKM acknowledge the support of HL163556, HL152960, DK054759, HL091842, HL147366 and Cystic Fibrosis Foundation.
- Published
- 2023
- Full Text
- View/download PDF
40. SARS-CoV-2 infection of sustentacular cells disrupts olfactory signaling pathways.
- Author
-
Verma AK, Zheng J, Meyerholz DK, and Perlman S
- Subjects
- Humans, Animals, Mice, Smell physiology, SARS-CoV-2, Anosmia, Inflammation, Signal Transduction, COVID-19, Olfaction Disorders
- Abstract
Loss of olfactory function has been commonly reported in SARS-CoV-2 infections. Recovery from anosmia is not well understood. Previous studies showed that sustentacular cells, and occasionally olfactory sensory neurons (OSNs) in the olfactory epithelium (OE), are infected in SARS-CoV-2-infected patients and experimental animals. Here, we show that SARS-CoV-2 infection of sustentacular cells induces inflammation characterized by infiltration of myeloid cells to the olfactory epithelium and variably increased expression of proinflammatory cytokines. We observed widespread damage to, and loss of cilia on, OSNs, accompanied by downregulation of olfactory receptors and signal transduction molecules involved in olfaction. A consequence of OSN dysfunction was a reduction in the number of neurons in the olfactory bulb expressing tyrosine hydroxylase, consistent with reduced synaptic input. Resolution of the infection, inflammation, and olfactory dysfunction occurred over 3-4 weeks following infection in most but not all animals. We also observed similar patterns of OE infection and anosmia/hyposmia in mice infected with other human coronaviruses such as SARS-CoV and MERS-CoV. Together, these results define the downstream effects of sustentacular cell infection and provide insight into olfactory dysfunction in COVID-19-associated anosmia.
- Published
- 2022
- Full Text
- View/download PDF
41. Ferret Lung Transplantation Models Differential Lymphoid Aggregate Morphology Between Restrictive and Obstructive Forms of Chronic Lung Allograft Dysfunction.
- Author
-
Lynch TJ, Ahlers BA, Swatek AM, Ievlev V, Pai AC, Brooks L, Tang Y, Evans IA, Meyerholz DK, Engelhardt JF, and Parekh KR
- Subjects
- Allografts, Animals, Ferrets, Humans, Lung surgery, RNA, Bronchiolitis Obliterans genetics, Graft vs Host Disease, Lung Transplantation adverse effects, Lymphoma, B-Cell complications
- Abstract
Background: Long-term survival after lung transplantation remains limited by chronic lung allograft dysfunction (CLAD). CLAD has 2 histologic phenotypes, namely obliterative bronchiolitis (OB) and restrictive alveolar fibroelastosis (AFE), which have distinct clinical presentations, pathologies, and outcomes. Understanding of OB versus AFE pathogenesis would improve with better animal models., Methods: We utilized a ferret orthotopic single-lung transplantation model to characterize allograft fibrosis as a histologic measure of CLAD. Native lobes and "No CLAD" allografts lacking aberrant histology were used as controls. We used morphometric analysis to evaluate the size and abundance of B-cell aggregates and tertiary lymphoid organs (TLOs) and their cell composition. Quantitative RNA expression of 47 target genes was performed simultaneously using a custom QuantiGene Plex Assay., Results: Ferret lung allografts develop the full spectrum of human CLAD histology including OB and AFE subtypes. While both OB and AFE allografts developed TLOs, TLO size and number were greater with AFE histology. More activated germinal center cells marked by B-cell lymphoma 6 Transcription Repressor, (B-cell lymphoma 6) expression and fewer cells expressing forkhead box P3 correlated with AFE, congruent with greater diffuse immunoglobulin, plasma cell abundance, and complement 4d staining. Furthermore, forkhead box P3 RNA induction was significant in OB allografts specifically. RNA expression changes were seen in native lobes of animals with AFE but not OB when compared with No CLAD native lobes., Conclusions: The orthotopic ferret single-lung transplant model provides unique opportunities to better understand factors that dispose allografts to OB versus AFE. This will help develop potential immunomodulatory therapies and antifibrotic approaches for lung transplant patients., Competing Interests: The authors declare no conflicts of interest., (Copyright © 2022 Wolters Kluwer Health, Inc. All rights reserved.)
- Published
- 2022
- Full Text
- View/download PDF
42. SARS-CoV-2-specific immunoglobulin Y antibodies are protective in infected mice.
- Author
-
El-Kafrawy SA, Odle A, Abbas AT, Hassan AM, Abdel-Dayem UA, Qureshi AK, Wong LR, Zheng J, Meyerholz DK, Perlman S, Zumla A, and Azhar EI
- Subjects
- Animals, Antibodies, Viral, Antiviral Agents, Chickens, Female, Humans, Immunoglobulins, Mice, COVID-19 prevention & control, SARS-CoV-2
- Abstract
Safe, passive immunization methods are required against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants. Immunization of chickens with antigen is known to induce specific IgY antibodies concentrated in the egg yolk and has a good safety profile, high yield of IgY per egg, can be topically applied, not requiring parenteral delivery. Our data provide the first evidence of the prophylactic efficacy of Immunoglobulin Y antibodies against SARS-CoV-2 in mice. Lohmann hens were injected with recombinant SARS-CoV-2 RBD protein; IgY-Abs were extracted from the eggs and characterized using SDS-PAGE. Antiviral activity was evaluated using plaque reduction neutralization tests. In additional experiments, IgY-RBD efficacy was examined in mice sensitized to SARS-CoV-2 infection by transduction with Ad5-hACE2 (mild disease) or by using mouse-adapted virus (severe disease). In both cases, prophylactic intranasal administration of IgY-Abs reduced SARS-CoV-2 replication, and reduced morbidity, inflammatory cell infiltration, hemorrhage, and edema in the lungs and increased survival compared to control groups that received non-specific IgY-Abs. These results indicate that further evaluation of IgY-RBD antibodies in humans is warranted., Competing Interests: The authors have declared that no competing interests exist.
- Published
- 2022
- Full Text
- View/download PDF
43. Mice expressing P301S mutant human tau have deficits in interval timing.
- Author
-
Larson T, Khandelwal V, Weber MA, Leidinger MR, Meyerholz DK, Narayanan NS, and Zhang Q
- Subjects
- Animals, Disease Models, Animal, Humans, Mammals, Mice, Mice, Transgenic, tau Proteins genetics, Alzheimer Disease genetics, Alzheimer Disease pathology, Tauopathies genetics, Tauopathies pathology
- Abstract
Interval timing is a key executive process that involves estimating the duration of an interval over several seconds or minutes. Patients with Alzheimer's disease (AD) have deficits in interval timing. Since temporal control of action is highly conserved across mammalian species, studying interval timing tasks in animal AD models may be relevant to human disease. Amyloid plaques and tau neurofibrillary tangles are hallmark features of AD. While rodent models of amyloid pathology are known to have interval timing impairments, to our knowledge, interval timing has not been studied in models of tauopathy. Here, we evaluate interval timing performance of P301S transgenic mice, a widely studied model of tauopathy that overexpresses human tau with the P301S mutation. We employed an interval timing task and found that P301S mice consistently underestimated temporal intervals compared to wild-type controls, responding early in anticipation of the target interval. Our study indicating timing deficits in a mouse tauopathy model could have relevance to human tauopathies such as AD., (Copyright © 2022. Published by Elsevier B.V.)
- Published
- 2022
- Full Text
- View/download PDF
44. Special focus on SARS-CoV-2 and other zoonotic respiratory coronaviruses in animal models.
- Author
-
Adissu HA, Meyerholz DK, Martinot AJ, and Ward JM
- Subjects
- Animals, Models, Animal, SARS-CoV-2, Zoonoses, COVID-19 veterinary, Middle East Respiratory Syndrome Coronavirus
- Published
- 2022
- Full Text
- View/download PDF
45. Influence of SARS-CoV-2 on airway mucus production: A review and proposed model.
- Author
-
Meyerholz DK and Reznikov LR
- Subjects
- Animals, Ferrets, Mucus, Pandemics veterinary, COVID-19 veterinary, SARS-CoV-2
- Abstract
Coronavirus disease 2019 (COVID-19) is a worldwide pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that has affected millions of lives. Individuals who survive severe COVID-19 can experience sustained respiratory symptoms that persist for months after initial infection. In other airway diseases, abnormal airway mucus contributes to sustained airway symptoms. However, the impact of SARS-CoV-2 on airway mucus has received limited attention. In the current review, we assess literature describing the impact of SARS-CoV-2 on airway pathophysiology with specific emphasis on mucus production. Accumulating evidence suggests that the 2 major secreted airway mucin glycoproteins, MUC5AC and MUC5B, are abnormal in some patients with COVID-19. Aberrations in MUC5AC or MUC5B in response to SARS-CoV-2 infection are likely due to inflammation, though the responsible mechanisms have yet to be determined. Thus, we also provide a proposed model highlighting mechanisms that can contribute to acute and sustained mucus abnormalities in SARS-CoV-2, with an emphasis on inflammatory cells and mediators, including mast cells and histamine. Last, we bring to light the challenges of studying abnormal mucus production in SARS-CoV-2 infections and discuss the strengths and limitations of model systems commonly used to study COVID-19. The evidence to date suggests that ferrets, nonhuman primates, and cats may have advantages over other models to investigate mucus in COVID-19.
- Published
- 2022
- Full Text
- View/download PDF
46. Utility of CD138/syndecan-1 immunohistochemistry for localization of plasmacytes is tissue-dependent in B6 mice.
- Author
-
Meyerholz DK, Leidinger MR, Goeken JA, Businga TR, Akers A, Vizuett S, Kaemmer CA, Kohlmeyer JL, Dodd RD, and Quelle DE
- Subjects
- Animals, Biomarkers metabolism, Immunohistochemistry, Mice, Plasma Cells metabolism, Neoplasms metabolism, Syndecan-1 metabolism
- Abstract
Objective: Inflammation is present in many diseases and identification of immune cell infiltration is a common assessment. CD138 (syndecan-1) is a recommended immunohistochemical marker for human plasmacytes although it is also expressed in various epithelia and tumors. Similarly, CD138 is a marker for murine plasmacytes, but its tissue immunostaining is not well-defined. Endogenous CD138 expression is an important confounding factor when evaluating plasmacyte infiltration. We studied two plasmacyte markers (CD138 and Kappa light chains) for endogenous immunostaining in five organs and one tumor from B6 mice., Results: Plasmacytes in Peyer's patches were positive for CD138 and Kappa markers without endogenous immunostaining. Endogenous CD138 immunostaining was widespread in liver, kidney, lung and a malignant peripheral nerve sheath tumor (MPNST) versus regionalized immunostaining in skin and small intestine wall. Endogenous Kappa immunostaining was absent in all tissues except for plasmacytes. Tissues with widespread endogenous CD138 immunostaining were contrasted by absence of endogenous Kappa immunostaining. Here, plasmacytes would not be distinguished by CD138, but would be obvious by Kappa immunostaining. Our study suggests that utility of immunostaining for plasmacytes by CD138 is tissue dependent in mice. Additionally, Kappa immunostaining may be a useful alternative in mouse tissues with confounding endogenous CD138 immunostaining., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
47. Time course of pulmonary inflammation and trace element biodistribution during and after sub-acute inhalation exposure to copper oxide nanoparticles in a murine model.
- Author
-
Areecheewakul S, Adamcakova-Dodd A, Haque E, Jing X, Meyerholz DK, O'Shaughnessy PT, Thorne PS, and Salem AK
- Subjects
- Animals, Copper toxicity, Disease Models, Animal, Inhalation Exposure adverse effects, Iron, Mice, Mice, Inbred BALB C, Oxides, Tissue Distribution, Metal Nanoparticles toxicity, Nanoparticles toxicity, Pneumonia, Trace Elements
- Abstract
Background: It has been shown that copper oxide nanoparticles (CuO NPs) induce pulmonary toxicity after acute or sub-acute inhalation exposures. However, little is known about the biodistribution and elimination kinetics of inhaled CuO NPs from the respiratory tract. The purposes of this study were to observe the kinetics of pulmonary inflammation during and after CuO NP sub-acute inhalation exposure and to investigate copper (Cu) biodistribution and clearance rate from the exposure site and homeostasis of selected trace elements in secondary organs of BALB/c mice., Results: Sub-acute inhalation exposure to CuO NPs led to pulmonary inflammation represented by increases in lactate dehydrogenase, total cell counts, neutrophils, macrophages, inflammatory cytokines, iron levels in bronchoalveolar lavage (BAL) fluid, and lung weight changes. Dosimetry analysis in lung tissues and BAL fluid showed Cu concentration increased steadily during exposure and gradually declined after exposure. Cu elimination from the lung showed first-order kinetics with a half-life of 6.5 days. Total Cu levels were significantly increased in whole blood and heart indicating that inhaled Cu could be translocated into the bloodstream and heart tissue, and potentially have adverse effects on the kidneys and spleen as there were significant changes in the weights of these organs; increase in the kidneys and decrease in the spleen. Furthermore, concentrations of selenium in kidneys and iron in spleen were decreased, pointing to disruption of trace element homeostasis., Conclusions: Sub-acute inhalation exposure of CuO NPs induced pulmonary inflammation, which was correlated to Cu concentrations in the lungs and started to resolve once exposure ended. Dosimetry analysis showed that Cu in the lungs was translocated into the bloodstream and heart tissue. Secondary organs affected by CuO NPs exposure were kidneys and spleen as they showed the disruption of trace element homeostasis and organ weight changes., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
48. A Single-Cell Atlas of Large and Small Airways at Birth in a Porcine Model of Cystic Fibrosis.
- Author
-
Thurman AL, Li X, Villacreses R, Yu W, Gong H, Mather SE, Romano-Ibarra GS, Meyerholz DK, Stoltz DA, Welsh MJ, Thornell IM, Zabner J, and Pezzulo AA
- Subjects
- Animals, Epithelial Cells metabolism, Humans, Inflammation metabolism, Ion Transport, Respiratory System metabolism, Swine, Cystic Fibrosis metabolism, Cystic Fibrosis Transmembrane Conductance Regulator metabolism
- Abstract
Lack of CFTR (cystic fibrosis transmembrane conductance regulator) affects the transcriptome, composition, and function of large and small airway epithelia in people with advanced cystic fibrosis (CF); however, whether lack of CFTR causes cell-intrinsic abnormalities present at birth versus inflammation-dependent abnormalities is unclear. We performed a single-cell RNA-sequencing census of microdissected small airways from newborn CF pigs, which recapitulate CF host defense defects and pathology over time. Lack of CFTR minimally affected the transcriptome of large and small airways at birth, suggesting that infection and inflammation drive transcriptomic abnormalities in advanced CF. Importantly, common small airway epithelial cell types expressed a markedly different transcriptome than corresponding large airway cell types. Quantitative immunohistochemistry and electrophysiology of small airway epithelia demonstrated basal cells that reach the apical surface and a water and ion transport advantage. This single cell atlas highlights the archetypal nature of airway epithelial cells with location-dependent gene expression and function.
- Published
- 2022
- Full Text
- View/download PDF
49. Cordyceps inhibits ceramide biosynthesis and improves insulin resistance and hepatic steatosis.
- Author
-
Li Y, Talbot CL, Chandravanshi B, Ksiazek A, Sood A, Chowdhury KH, Maschek JA, Cox J, Babu AKS, Paz HA, Babu PVA, Meyerholz DK, Wankhade UD, Holland W, Shyong Tai E, Summers SA, and Chaurasia B
- Subjects
- Animals, Ceramides metabolism, Glucose, Mice, Mice, Inbred C57BL, Obesity drug therapy, Obesity metabolism, Plant Extracts, Cordyceps metabolism, Fatty Liver drug therapy, Insulin Resistance physiology
- Abstract
Ectopic ceramide accumulation in insulin-responsive tissues contributes to the development of obesity and impairs insulin sensitivity. Moreover, pharmacological inhibition of serine palmitoyl transferase (SPT), the first enzyme essential for ceramide biosynthesis using myriocin in rodents reduces body weight and improves insulin sensitivity and associated metabolic indices. Myriocin was originally extracted from fruiting bodies of the fungus Isaria sinclairii and has been found abundant in a number of closely related fungal species such as the Cordyceps. Myriocin is not approved for human use but extracts from Cordyceps are routinely consumed as part of traditional Chinese medication for the treatment of numerous diseases including diabetes. Herein, we screened commercially available extracts of Cordyceps currently being consumed by humans, to identify Cordyceps containing myriocin and test the efficacy of Cordyceps extract containing myriocin in obese mice to improve energy and glucose homeostasis. We demonstrate that commercially available Cordyceps contain variable amounts of myriocin and treatment of mice with a human equivalent dose of Cordyceps extract containing myriocin, reduces ceramide accrual, increases energy expenditure, prevents diet-induced obesity, improves glucose homeostasis and resolves hepatic steatosis. Mechanistically, these beneficial effects were due to increased adipose tissue browning/beiging, improved brown adipose tissue function and hepatic insulin sensitivity as well as alterations in the abundance of gut microbes such as Clostridium and Bilophila. Collectively, our data provide proof-of-principle that myriocin containing Cordyceps extract inhibit ceramide biosynthesis and attenuate metabolic impairments associated with obesity. Moreover, these studies identify commercially available Cordyceps as a readily available supplement to treat obesity and associated metabolic diseases., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF
50. Eicosanoid signalling blockade protects middle-aged mice from severe COVID-19.
- Author
-
Wong LR, Zheng J, Wilhelmsen K, Li K, Ortiz ME, Schnicker NJ, Thurman A, Pezzulo AA, Szachowicz PJ, Li P, Pan R, Klumpp K, Aswad F, Rebo J, Narumiya S, Murakami M, Zuniga S, Sola I, Enjuanes L, Meyerholz DK, Fortney K, McCray PB Jr, and Perlman S
- Subjects
- Animals, Eicosanoids, Leukocytes, Mononuclear, Mice, Organic Chemicals, Oxazoles, Piperazines, Polyesters, Prostaglandins, Spike Glycoprotein, Coronavirus, Sulfonamides, COVID-19, SARS-CoV-2
- Abstract
Coronavirus disease 2019 (COVID-19) is especially severe in aged populations
1 . Vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are highly effective, but vaccine efficacy is partly compromised by the emergence of SARS-CoV-2 variants with enhanced transmissibility2 . The emergence of these variants emphasizes the need for further development of anti-SARS-CoV-2 therapies, especially for aged populations. Here we describe the isolation of highly virulent mouse-adapted viruses and use them to test a new therapeutic drug in infected aged animals. Many of the alterations observed in SARS-CoV-2 during mouse adaptation (positions 417, 484, 493, 498 and 501 of the spike protein) also arise in humans in variants of concern2 . Their appearance during mouse adaptation indicates that immune pressure is not required for selection. For murine SARS, for which severity is also age dependent, elevated levels of an eicosanoid (prostaglandin D2 (PGD2 )) and a phospholipase (phospholipase A2 group 2D (PLA2 G2D)) contributed to poor outcomes in aged mice3,4 . mRNA expression of PLA2 G2D and prostaglandin D2 receptor (PTGDR), and production of PGD2 also increase with ageing and after SARS-CoV-2 infection in dendritic cells derived from human peripheral blood mononuclear cells. Using our mouse-adapted SARS-CoV-2, we show that middle-aged mice lacking expression of PTGDR or PLA2 G2D are protected from severe disease. Furthermore, treatment with a PTGDR antagonist, asapiprant, protected aged mice from lethal infection. PTGDR antagonism is one of the first interventions in SARS-CoV-2-infected animals that specifically protects aged animals, suggesting that the PLA2 G2D-PGD2 /PTGDR pathway is a useful target for therapeutic interventions., (© 2022. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.