1. Single nucleus transcriptomics, pharmacokinetics, and pharmacodynamics of combined CDK4/6 and mTOR inhibition in a phase 0/1 trial of recurrent high-grade glioma.
- Author
-
Johnson KC, Tien AC, Jiang J, McNamara J, Chang YW, Montgomery C, DeSantis A, Elena-Sanchez L, Fujita Y, Kim S, Spitzer A, Gabriel P, Flynn WF, Courtois ET, Hong A, Harmon J, Umemura Y, Tovmasyan A, Li J, Mehta S, Verhaak R, and Sanai N
- Abstract
Outcomes for adult patients with a high-grade glioma continue to be dismal and new treatment paradigms are urgently needed. To optimize the opportunity for discovery, we performed a phase 0/1 dose-escalation clinical trial that investigated tumor pharmacokinetics, pharmacodynamics, and single nucleus transcriptomics following combined ribociclib (CDK4/6 inhibitor) and everolimus (mTOR inhibitor) treatment in recurrent high-grade glioma. Patients with a recurrent high-grade glioma (n = 24) harboring 1) CDKN2A / B deletion or CDK4 / 6 amplification, 2) PTEN loss or PIK3CA mutations, and 3) wild-type retinoblastoma protein (Rb) were enrolled. Patients received neoadjuvant ribociclib and everolimus treatment and no dose-limiting toxicities were observed. The median unbound ribociclib concentrations in Gadolinium non-enhancing tumor regions were 170 nM (range, 65 - 1770 nM) and 634 nM (range, 68 - 2345 nM) in patients receiving 5 days treatment at the daily dose of 400 and 600 mg, respectively. Unbound everolimus concentrations were below the limit of detection (< 0.1 nM) in both enhancing and non-enhancing tumor regions at all dose levels. We identified a significant decrease in MIB1 positive cells suggesting ribociclib-associated cell cycle inhibition. Single nuclei RNAseq (snRNA) based comparisons of 17 IDH-wild-type on-trial recurrences to 31 IDH-wild-type standard of care treated recurrences data demonstrated a significantly lower fraction of cycling and neural progenitor-like (NPC-like) malignant cell populations. We validated the CDK4/6 inhibitor-directed malignant cell state shifts using three patient-derived cell lines. The presented clinical trial highlights the value of integrating pharmacokinetics, pharmacodynamics, and single nucleus transcriptomics to assess treatment effects in phase 0/1 surgical tissues, including malignant cell state shifts. ClinicalTrials.gov identifier: NCT03834740 .
- Published
- 2024
- Full Text
- View/download PDF