1. Enhancing tertiary students' programming skills with an explainable Educational Data Mining approach.
- Author
-
Islam MR, Nitu AM, Marjan MA, Uddin MP, Afjal M, and Mamun MAA
- Subjects
- Humans, Machine Learning, Algorithms, Artificial Intelligence, Data Mining methods, Students
- Abstract
Educational Data Mining (EDM) holds promise in uncovering insights from educational data to predict and enhance students' performance. This paper presents an advanced EDM system tailored for classifying and improving tertiary students' programming skills. Our approach emphasizes effective feature engineering, appropriate classification techniques, and the integration of Explainable Artificial Intelligence (XAI) to elucidate model decisions. Through rigorous experimentation, including an ablation study and evaluation of six machine learning algorithms, we introduce a novel ensemble method, Stacking-SRDA, which outperforms others in accuracy, precision, recall, f1-score, ROC curve, and McNemar test. Leveraging XAI tools, we provide insights into model interpretability. Additionally, we propose a system for identifying skill gaps in programming among weaker students, offering tailored recommendations for skill enhancement., Competing Interests: The authors have declared that no competing interests exist., (Copyright: © 2024 Islam et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- Published
- 2024
- Full Text
- View/download PDF