1. Oleanolic acid inhibits aldo-keto reductase family 1 member B10-induced cancer stemness and avoids cisplatin-based chemotherapy resistance via the Snail signaling pathway in oral squamous cell carcinoma cell lines.
- Author
-
Ko HH, Chou HE, Hou HH, Kuo WT, Liu WW, Yen-Ping Kuo M, and Cheng SJ
- Abstract
Background/purpose: Oral squamous cell carcinoma (OSCC) is a common malignancy often associated with poor prognosis due to chemoresistance. In this study, we investigated whether arecoline, a major alkaloid in betel nuts, can stimulate aldo-keto reductase family 1 member B10 (AKR1B10) levels in OSCC, promoting cancer stemness and leading to resistance to cisplatin (CDDP)-based chemotherapy., Materials and Methods: Gain- and Loss- of AKR1B10 functions were analyzed using WB and q-PCR of OSCC cells. Stemness, epithelial mesenchymal transition (EMT) markers, and CDDP drug resistance in overexpressed AKR1B10 were also identified., Results: Upregulated AKR1B10 in OSCC significantly increased cell motility and aggregation. The results also showed that the canonical TGF-β1-Smad3 pathway was involved in arecoline-induced AKR1B10 expression, further increasing cancer stemness with CDDP resistance via the Snail-dependent EMT pathway. Moreover, oleanolic acid (OA) and ROS/RNS (reactive oxygen/nitrogen species) inhibitors effectively reversed AKR1B10-induced CDDP-resistance., Conclusion: Arecoline-induced ROS/RNS to hyper-activate AKR1B10 in tumor sphere cells via the TGF-β1-Smad3 pathway. Furthermore, AKR1B10 enhanced CDDP resistance in OSCC cells via EMT-inducing markers. Finally, Finally, OA may efficiently target CDDP resistance, reverse stemness in OSCC cells, and have the potential as a novel anticancer drug., Competing Interests: The authors have stated that there are no conflicts of interest related to this study., (© 2024 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier B.Vé.)
- Published
- 2025
- Full Text
- View/download PDF