1. Enhancement of Upconversion Luminescence through Three-Dimensional Design of Plasma Ti 3 O 5 -Coupled Structural Domain-Limiting Effects.
- Author
-
Xu J, Xu Y, Yan J, Wu Y, Zhang Y, Yang Y, Zhou D, Long Z, Wang Q, and Qiu J
- Abstract
Upconversion luminescence plays a crucial role in various technological applications, and among the various valence states of lanthanide elements, Ln
3+ has the highest stability. The 4f orbitals of these elements are in a fully empty, semifull, or full state. This special 4f electron configuration allows them to exhibit rich discrete energy levels. However, the 4f-4f transition of Ln3+ rare earth ions itself is prohibited, resulting in a lower luminescence efficiency. This limitation greatly hinders the practical application of upconversion luminescence. In this study, we report nanostructured luminescence-enhanced substrate platforms with both semiconductive local surface plasmons and spatially confined domain effects on a single defect semiconductor substrate. By coupling NaYF4 :Yb-Er nanoparticle emitters to the surface of Ti3 O5 NC-arrays plasmonic nanostructures, an ultrabright luminescence with a 32-fold increase in green emission and a 40-fold increase in red emission was achieved. Furthermore, the fluorescence resonance energy transfer characteristics observed in the R6G/NaYF4 /Ti3 O5 NC-array composite film enable accurate detection of fluorescent molecules. The results provide an innovative and intelligent approach to enhance the upconversion luminescence intensity of rare-doped nanoparticles and develop highly sensitive molecular detection systems based on the above luminescence enhancement.- Published
- 2024
- Full Text
- View/download PDF