1. The serine palmitoyltransferase core subunit StLcb2 regulates sphingolipid metabolism and promotes Setosphaeria turcica pathogenicity by modulating appressorium development.
- Author
-
Li P, An Z, Sun H, Meng Y, Hou L, Han X, Feng S, Liu Y, Shen S, Zeng F, Dong J, and Hao Z
- Abstract
The fungal pathogen Setosphaeria turcica (S. turcica) causes northern corn leaf blight (NCLB), resulting in significant yield and economic losses in maize. To elucidate the metabolic pathways essential for its pathogenicity, we investigated the metabolome of S. turcica during appressorium development, a critical stage for host infection. Our analysis indicated a substantial enrichment of sphingosine and related compounds during this phase. The application of chemical inhibitors to disrupt sphingolipid metabolism confirmed their pivotal role in appressorium formation and pathogenicity. Additionally, silencing of the serine palmitoyl transferase (Spt) core subunit gene StLCB2 led to significant alterations in fungal morphology and growth, accompanied by changes in cell membrane integrity, surface hydrophobicity, melanin, and sphingosine synthesis. These findings underscore the importance of sphingolipids in the pathogenicity of S. turcica and suggest that targeting specific components of the sphingolipid pathway could aid in developing novel fungicides or genetically engineered maize varieties with increased resistance to NCLB., Competing Interests: Declaration of competing interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest., (Copyright © 2024. Published by Elsevier B.V.)
- Published
- 2024
- Full Text
- View/download PDF