1. Structure-properties relationships of defined CNF single-networks crosslinked by telechelic PEGs.
- Author
-
Cortes Ruiz MF, Garemark J, Ritter M, Brusentsev Y, Larsson PT, Olsén P, and Wågberg L
- Abstract
The high structural anisotropy and colloidal stability of cellulose nanofibrils' enable the creation of self-standing fibrillar hydrogel networks at very low solid contents. Adding methacrylate moieties on the surface of TEMPO oxidized CNFs allows the formation of more robust covalently crosslinked networks by free radical polymerization of acrylic monomers, exploiting the mechanical properties of these networks more efficiently. This technique yields strong and elastic networks but with an undefined network structure. In this work, we use acrylate-capped telechelic polymers derived from the step-growth polymerization of PEG diacrylate and dithiothreitol to crosslink methacrylated TEMPO-oxidized cellulose nanofibrils (MATO CNF). This combination resulted in flexible and strong hydrogels, as observed through rheological studies, compression and tensile loading. The structure and mechanical properties of these hydrogel networks were found to depend on the dimensions of the CNFs and polymer crosslinkers. The structure of the networks and the role of individual components were evaluated with SAXS (Small-Angle X-ray Scattering) and photo-rheology. A thorough understanding of hybrid CNF/polymer networks and how to best exploit the capacity of these networks enable further advancement of cellulose-based materials for applications in packaging, soft robotics, and biomedical engineering., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF