1. Virtual cavity in distributed Bragg reflectors.
- Author
-
Shchukin VA, Ledentsov NN, Kalosha VP, Ledentsov N, Agustin M, Kropp JR, Maximov MV, Zubov FI, Shernyakov YM, Payusov AS, Gordeev NY, Kulagina MM, Zhukov AE, and Egorov AY
- Abstract
We show theoretically and experimentally that distributed Bragg reflector (DBR) supports a surface electromagnetic wave exhibiting evanescent decay in the air and oscillatory decay in the DBR. The wave exists in TM polarization only. The field extension in the air may reach several wavelengths of light. Once gain medium is introduced into the DBR a novel class of diode lasers, semiconductor optical amplifiers, light-emitting diodes, etc. can be developed allowing a new type of in-plane or near-field light outcoupling. To improve the wavelength stability of the laser diode, a resonant cavity structure can be coupled to the DBR, allowing a coupled state of the cavity mode and the near-field mode. A GaAlAs-based epitaxial structure of a vertical-cavity surface-emitting laser (VCSEL) having an antiwaveguiding cavity and multiple GaInAs quantum wells as an active region was grown and processed as an in-plane Fabry-Pérot resonator with cleaved facets. Windows in the top stripe contact were made to facilitate monitoring of the optical modes. Three types of the optical modes were observed in electroluminescence (EL) studies under high current densities > 1 kA/cm
2 . Mode A with the longest wavelength is a VCSEL-like mode emitting normal to the surface. Mode B has a shorter wavelength, emitting light at two symmetric lobes tilted with respect to the normal to the surface in the direction parallel to the stripe. Mode C has the shortest wavelength and shifts with a temperature at a rate 0.06 nm/K. Polarization studies reveal predominantly TE emission for modes A and B and purely TM for mode C in agreement with the theory. Spectral position, thermal shift and polarization of mode C confirm it to be a coupled state of the cavity mode and near-field DBR surface-trapped mode.- Published
- 2018
- Full Text
- View/download PDF