1. Use of simulation mass balance modeling to estimate phosphorus and bacteria dynamics in watersheds.
- Author
-
Cassell EA, Meals DW, Aschmann SG, Anderson DP, Rosen BH, Kort RL, and Dorioz JM
- Subjects
- Agriculture, Animals, Bacteria, Cattle, Environment, Forestry, Phosphorus analysis, Policy Making, Population Dynamics, Water Movements, Water Supply, Models, Theoretical, Phosphorus metabolism, Water Microbiology, Water Pollution prevention & control
- Abstract
Dynamic simulation technology is integrated with mass balance concepts and compartment-flux diagramming to create computer models that estimate contaminant export from watersheds over long and short-term futures under alternative simulated policies of watershed management. The Watershed Ecosystem Nutrient Dynamics (WEND) model, applied to developed watersheds with a mix of urban, agricultural, and forest land-uses, predicted phosphorus (P) export from three watersheds; a 275,000 ha dairy/urban watershed, a 77,000 ha poultry/urban watershed, and a 23,000 ha swine dominated watershed. Urban, agricultural, and forestry activities contribute to P export in different proportions. In all cases the P imports to the watershed exceed total export and P accumulates in watershed soils. Long-term future P export patterns are compared for several watershed management strategies that range from encouragement of rapid urban growth to aggressive environmental protection. The specific response of each watershed to imposed management is unique, but management strategies designed to reduce export of P over the long-term need to consider options that promote P input/output balance. Using this same approach, the Watershed Ecosystem Bacterial Dynamics (WEBD) model assesses the dynamics of bacterial populations in a small case-study watershed over an annual cycle as influenced by dairy farm management actions. WEND and WEBD models integrate the diversity of activities and stakeholders interested in the watershed and promote development of a more holistic understanding of watershed function. Model outputs are designed to assist watershed policy-makers, managers, and planners to explore potential future impacts of management/policy decisions.
- Published
- 2002