1. Discovery of GLPG2737, a Potent Type 2 Corrector of CFTR for the Treatment of Cystic Fibrosis in Combination with a Potentiator and a Type 1 Co-corrector.
- Author
-
Pizzonero M, Akkari R, Bock X, Gosmini R, De Lemos E, Duthion B, Newsome G, Mai TT, Roques V, Jary H, Lefrancois JM, Cherel L, Quenehen V, Babel M, Merayo N, Bienvenu N, Mammoliti O, Coti G, Palisse A, Cowart M, Shrestha A, Greszler S, Van Der Plas S, Jansen K, Claes P, Jans M, Gees M, Borgonovi M, De Wilde G, and Conrath K
- Subjects
- Humans, Cystic Fibrosis Transmembrane Conductance Regulator genetics, Cystic Fibrosis Transmembrane Conductance Regulator metabolism, Mutation, Cell Membrane metabolism, Carboxylic Acids therapeutic use, Benzodioxoles pharmacology, Aminopyridines therapeutic use, Cystic Fibrosis genetics
- Abstract
Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) protein. This epithelial anion channel regulates the active transport of chloride and bicarbonate ions across membranes. Mutations result in reduced surface expression of CFTR channels with impaired functionality. Correctors are small molecules that support the trafficking of CFTR to increase its membrane expression. Such correctors can have different mechanisms of action. Combinations may result in a further improved therapeutic benefit. We describe the identification and optimization of a new pyrazolol3,4-bl pyridine-6-carboxylic acid series with high potency and efficacy in rescuing CFTR from the cell surface. Investigations showed that carboxylic acid group replacement with acylsulfonamides and acylsulfonylureas improved ADMET and PK properties, leading to the discovery of the structurally novel co-corrector GLPG2737. The addition of GLPG2737 to the combination of the potentiator GLPG1837 and C1 corrector 4 led to an 8-fold increase in the F508del CFTR activity.
- Published
- 2024
- Full Text
- View/download PDF