1. Multi-level feature fusion networks for smoke recognition in remote sensing imagery.
- Author
-
Wang Y, Wang Y, Khan ZA, Huang A, and Sang J
- Abstract
Smoke is a critical indicator of forest fires, often detectable before flames ignite. Accurate smoke identification in remote sensing images is vital for effective forest fire monitoring within Internet of Things (IoT) systems. However, existing detection methods frequently falter in complex real-world scenarios, where variable smoke shapes and sizes, intricate backgrounds, and smoke-like phenomena (e.g., clouds and haze) lead to missed detections and false alarms. To address these challenges, we propose the Multi-level Feature Fusion Network (MFFNet), a novel framework grounded in contrastive learning. MFFNet begins by extracting multi-scale features from remote sensing images using a pre-trained ConvNeXt model, capturing information across different levels of granularity to accommodate variations in smoke appearance. The Attention Feature Enhancement Module further refines these multi-scale features, enhancing fine-grained, discriminative attributes relevant to smoke detection. Subsequently, the Bilinear Feature Fusion Module combines these enriched features, effectively reducing background interference and improving the model's ability to distinguish smoke from visually similar phenomena. Finally, contrastive feature learning is employed to improve robustness against intra-class variations by focusing on unique regions within the smoke patterns. Evaluated on the benchmark dataset USTC_SmokeRS, MFFNet achieves an accuracy of 98.87%. Additionally, our model demonstrates a detection rate of 94.54% on the extended E_SmokeRS dataset, with a low false alarm rate of 3.30%. These results highlight the effectiveness of MFFNet in recognizing smoke in remote sensing images, surpassing existing methodologies. The code is accessible at https://github.com/WangYuPeng1/MFFNet., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2025 Elsevier Ltd. All rights reserved.)
- Published
- 2025
- Full Text
- View/download PDF