1. Adaptive control for mimo uncertain nonlinear systems using recurrent wavelet neural network.
- Author
-
Lin CM, Ting AB, Hsu CF, and Chung CM
- Subjects
- Algorithms, Computer Simulation, Models, Theoretical, Neural Networks, Computer, Nonlinear Dynamics, Wavelet Analysis
- Abstract
Recurrent wavelet neural network (RWNN) has the advantages such as fast learning property, good generalization capability and information storing ability. With these advantages, this paper proposes an RWNN-based adaptive control (RBAC) system for multi-input multi-output (MIMO) uncertain nonlinear systems. The RBAC system is composed of a neural controller and a bounding compensator. The neural controller uses an RWNN to online mimic an ideal controller, and the bounding compensator can provide smooth and chattering-free stability compensation. From the Lyapunov stability analysis, it is shown that all signals in the closed-loop RBAC system are uniformly ultimately bounded. Finally, the proposed RBAC system is applied to the MIMO uncertain nonlinear systems such as a mass-spring-damper mechanical system and a two-link robotic manipulator system. Simulation results verify that the proposed RBAC system can achieve favorable tracking performance with desired robustness without any chattering phenomenon in the control effort.
- Published
- 2012
- Full Text
- View/download PDF