1. Extensions of the External Validation for Checking Learned Model Interpretability and Generalizability.
- Author
-
Ho SY, Phua K, Wong L, and Bin Goh WW
- Abstract
We discuss the validation of machine learning models, which is standard practice in determining model efficacy and generalizability. We argue that internal validation approaches, such as cross-validation and bootstrap, cannot guarantee the quality of a machine learning model due to potentially biased training data and the complexity of the validation procedure itself. For better evaluating the generalization ability of a learned model, we suggest leveraging on external data sources from elsewhere as validation datasets, namely external validation. Due to the lack of research attractions on external validation, especially a well-structured and comprehensive study, we discuss the necessity for external validation and propose two extensions of the external validation approach that may help reveal the true domain-relevant model from a candidate set. Moreover, we also suggest a procedure to check whether a set of validation datasets is valid and introduce statistical reference points for detecting external data problems., (© 2020 The Authors.)
- Published
- 2020
- Full Text
- View/download PDF