90 results on '"Hati S"'
Search Results
2. Whole genome sequencing (WGS) analysis of antimicrobial resistance (AMR) milk and dairy-derived pathogens from Anand, Gujarat, India.
- Author
-
Hati S, Vahora S, Panchal J, Patel S, Patel A, Chauhan H, Sharma K, Sabara P, and Shrimali M
- Abstract
This study aimed to evaluate the antimicrobial resistance (AMR) patterns and genomic characteristics of Enterococcus faecalis, Enterococcus faecium, and Staphylococcus aureus strains isolated from dairy products, including buttermilk, curd, ice cream, and sweets, in the Anand region of Gujarat, India. A total of 205 isolates were analysed, with the highest contamination levels found in buttermilk and curd. The bacterial isolates were identified using biochemical tests and advanced Matrix-Assisted Laser Desorption/Ionization Time-of-Flight (MALDI-TOF) mass spectrometry. Antimicrobial susceptibility testing (AST) was performed using the Kirby-Bauer disk diffusion method, following CLSI guidelines, focusing on common antibiotics used for treating dairy-related bacterial infections. Resistance profiles were analysed using WHONET software.s The findings revealed significant multidrug resistance (MDR), particularly among E. faecium and E. faecalis, with over 95 % resistance to key antibiotics, including linezolid, ciprofloxacin, cefpodoxime, and carbapenems. Many strains were classified as MDR, XDR, and PDR. Staphylococcus aureus also exhibited substantial resistance to penicillin and enrofloxacin. whole-genome sequencing (WGS) and phylogenetic analysis to identify AMR determinants and conduct nucleotide sequence alignment. The study identified several antibiotic resistance genes, including LiaF, which regulates the expression of LiaR and LiaS genes. WGS revealed that genes such as GdpD, MprF, and PgsA encode intrinsic resistance determinants, contributing to antibiotic resistance. Additional AMR mechanisms were identified, including ABC transporter efflux pumps and the regulation of resistance genes by LiaR and LiaS. Phylogenetic analysis indicates a close relationship between Enterococcus faecium 640 1352.18624 and Enterococcus durans FB129-CNAB-4 883162.3., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
3. Influence of intrinsic spin ordering in La 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3- δ and Ba 0.6 Sr 0.4 Co 0.8 Fe 0.2 O 3- δ towards electrocatalysis of oxygen redox reaction in solid oxide cell.
- Author
-
Dey S, Saravanan R, Hati S, Goswami S, Suresh A, Jaiswal-Nagar D, Ghosh M, Paul S, Bhattacharya A, Mukhopadhyay M, and Mukhopadhyay J
- Abstract
The redox reaction of oxygen (OER & ORR) forms the rate determining step of important processes like cellular respiration and water splitting. Being a spin relaxed process governed by quantum spin exchange interaction, QSEI (the ground triplet state in O
2 is associated with singlet oxygen in H2 O/OH- ), its kinetics is sluggish and requires inclusion of selective catalyst. Functionality and sustainability of solid oxide cell involving fuel cell (FC) and electrolyzer cell (EC) are also controlled by ORR (oxygen redox reaction) and OER (oxygen evolution reaction). We suggest that, presence of inherent spin polarization within La0.6 Sr0.4 Co0.8 Fe0.2 O3- δ (LSCF6482) (15.86 emu g-1 ) and Ba0.6 Sr0.4 Co0.8 Fe0.2 O3- δ (BSCF6482) (3.64 emu g-1 ) accounts for the excellent selective electrocatalysis towards ORR and OER. QSEI forms the atomic level basis for OER/ORR which is directly proportional to spin ordering (non-zero magnetization) of the active electrocatalyst. LSCF6482 exhibits (21.5 kJ mol-1 @0.8 V for ORR compared to 61 kJ mol-1 @0.8 V for OER) improved ORR kinetics whereas BSCF6482 (18.79 kJ mol-1 @0.8 V for OER compared to 32.19 kJ mol-1 for ORR@-0.8 V) is best suited for OER under the present stoichiometry. The findings establish the presence of inherent spin polarization of catalyst to be an effective descriptor for OER and ORR kinetics in solid oxide cell (SOC)., Competing Interests: There are no conflicts to declare., (This journal is © The Royal Society of Chemistry.)- Published
- 2024
- Full Text
- View/download PDF
4. Incorporation of carbon dots into polyvinyl alcohol/corn starch based film and its application on shiitake mushroom preservation.
- Author
-
Liu Z, Cui M, Weng R, E H, Li H, Hati S, Hu L, and Mo H
- Abstract
Developing eco-friendly edible packaging films with multi-functional properties is highly required. This study involved synthesizing carbon dots (CDs) from dragon fruit, then incorporating them into a composite film based on polyvinyl alcohol (PVA)/corn starch (CS) to create a functional package to extend the shelf life of fresh shiitake mushrooms. Functional composite films with varying levels of CDs were formulated. The films' characteristics of morphology, mechanical properties, antioxidant properties, etc. were then determined, as well as their preservation effect on the fresh shiitake mushrooms. The results showed that the PVA/CS/CDs composite film showed excellent mechanical property, Ultraviolet (UV) barrier capability, antioxidant and antimicrobial properties. Specifically, addition of 8 mg/mL CDs in the composite films reduced weight loss of shiitake mushrooms by 30.74 %, decreased the decline in soluble solids content by 10.48 %, and halved the reduction in total sugar content after a 7-day storage period compared to films without added CDs. Furthermore, the films effectively lowered the respiratory intensity and browning of the mushrooms. This research demonstrates that CDs can serve as an effective component for the development of eco-friendly edible packaging films, as well as for their application in food preservation., Competing Interests: Declaration of competing interest None., (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF
5. Conformational fluidity of intrinsically disordered proteins in crowded environment: a molecular dynamics simulation study.
- Author
-
Shult C, Gunderson K, Coffey SJ, McNally B, Brandt M, Smith L, Steczynski J, Olerich ER, Schroeder SE, Severson NJ, Hati S, and Bhattacharyay S
- Abstract
The class of intrinsically disordered proteins lacks stable three-dimensional structures. Their flexibility allows them to engage in a wide variety of interactions with other biomolecules thus making them biologically relevant and efficient. The intrinsic disorders of these proteins, which undergo binding-induced folding, allow alterations in their topologies while conserving their binding sites. Due to the lack of well-defined three-dimensional structures in the absence of their physiological partners, the folding and the conformational dynamics of these proteins remained poorly understood. Particularly, it is unclear how these proteins exist in the crowded intracellular milieu. In the present study, molecular dynamic simulations of two intrinsically unstructured proteins and two controls (folded proteins) were conducted in the presence and absence of molecular crowders to obtain an in-depth insight into their conformational flexibility. The present study revealed that polymer crowders stabilize the disordered proteins through enthalpic as well as entropic effects that are significantly more than their monomeric counterpart. Taken together, the study delves deep into crowding effects on intrinsically disordered proteins and provides insights into how molecular crowders induce a significantly diverse ensemble of dynamic scaffolds needed to carry out diverse functions.Communicated by Ramaswamy H. Sarma.
- Published
- 2024
- Full Text
- View/download PDF
6. Polyethylene Glycol Impacts Conformation and Dynamics of Escherichia coli Prolyl-tRNA Synthetase Via Crowding and Confinement Effects.
- Author
-
Liebau J, Laatsch BF, Rusnak J, Gunderson K, Finke B, Bargender K, Narkiewicz-Jodko A, Weeks K, Williams MT, Shulgina I, Musier-Forsyth K, Bhattacharyya S, and Hati S
- Subjects
- Escherichia coli Proteins chemistry, Escherichia coli Proteins metabolism, Microscopy, Atomic Force, Catalytic Domain, Molecular Weight, Polyethylene Glycols chemistry, Escherichia coli enzymology, Escherichia coli metabolism, Molecular Dynamics Simulation, Protein Conformation, Amino Acyl-tRNA Synthetases chemistry, Amino Acyl-tRNA Synthetases metabolism, Amino Acyl-tRNA Synthetases antagonists & inhibitors
- Abstract
Polyethylene glycol (PEG) is a flexible, nontoxic polymer commonly used in biological and medical research, and it is generally regarded as biologically inert. PEG molecules of variable sizes are also used as crowding agents to mimic intracellular environments. A recent study with PEG crowders revealed decreased catalytic activity of Escherichia coli prolyl-tRNA synthetase (Ec ProRS), where the smaller molecular weight PEGs had the maximum impact. The molecular mechanism of the crowding effects of PEGs is not clearly understood. PEG may impact protein conformation and dynamics, thus its function. In the present study, the effects of PEG molecules of various molecular weights and concentrations on the conformation and dynamics of Ec ProRS were investigated using a combined experimental and computational approach including intrinsic tryptophan fluorescence spectroscopy, atomic force microscopy, and atomistic molecular dynamic simulations. Results of the present study suggest that lower molecular weight PEGs in the dilute regime have modest effects on the conformational dynamics of Ec ProRS but impact the catalytic function primarily via the excluded volume effect; they form large clusters blocking the active site pocket. In contrast, the larger molecular weight PEGs in dilute to semidilute regimes have a significant impact on the protein's conformational dynamics; they wrap on the protein surface through noncovalent interactions. Thus, lower-molecular-weight PEG molecules impact protein dynamics and function via crowding effects, whereas larger PEGs induce confinement effects. These results have implications for the development of inhibitors for protein targets in a crowded cellular environment.
- Published
- 2024
- Full Text
- View/download PDF
7. Production and characterization of anti-hypertensive and anti-diabetic peptides from fermented sheep milk with anti-inflammatory activity: in vitro and molecular docking studies.
- Author
-
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Liu Z, Sarkar P, and Hati S
- Abstract
Background: The present study aimed to evaluate the anti-hypertensive and anti-diabetic activities from biologically active peptides produced by fermented sheep milk with Lacticaseibacillus paracasei M11 (MG027695), as well as to purify and characterize the angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic peptides produced from fermented sheep milk., Results: After 48 h of fermentation at 37 °C, sheep milk demonstrated significant changes in anti-diabetic effects and ACE-I effects, with inhibition percentages observed for ACE inhibition (76.32%), α-amylase (70.13%), α-glucosidase (70.11%) and lipase inhibition (68.22%). The highest level of peptides (9.77 mg mL
-1 ) was produced by optimizing the growth conditions, which included an inoculation rate of 2.5% and a 48 h of incubation period. The comparison of molecular weight distributions among protein fractions was conducted through sodium dodecyl-sulfate polyacrylamide gel electrophoresis analysis, whereas spots were separated using 2D gel electrophoresis according to both the molecular weight and pH. Peptide characterization with ultra-filtration membranes at 3 and 10 kDa allowed the study to assess molecular weight-based separation. Nitric oxide generated by lipopolysaccharide and the secretion of pro-inflammatory cytokines in RAW 264.7 immune cells were both inhibited by sheep milk fermented with M11. Fourier-transform infrared spectroscopy was employed to assess changes in functional groups after fermentation, providing insights into the structural changes occurring during fermentation., Conclusion: The present study demonstrates that fermentation with L. paracasei (M11) led to significant changes in fermented sheep milk, enhancing its bioactive properties, notably in terms of ACE inhibition and anti-diabetic activities, and the generation of peptides with bioactive properties has potential health benefits. © 2024 Society of Chemical Industry., (© 2024 Society of Chemical Industry.)- Published
- 2024
- Full Text
- View/download PDF
8. Writing a literature review as a class project in an upper-level undergraduate biochemistry course.
- Author
-
Hati S and Bhattacharyya S
- Subjects
- Humans, Universities, Review Literature as Topic, Biochemistry education, Writing, Students, Curriculum
- Abstract
A literature review is an important part of conducting academic research. Knowing how to conduct a literature search and write a high-quality literature review is a valuable skill. Herein, the authors describe the method of introducing a literature review writing exercise in an upper-level biochemistry course. Since 2020, authors have collaborated with numerous undergraduates writing literature reviews on topics in biochemistry that resulted in peer-reviewed publications. Authors believe that this unique idea of providing a course-based undergraduate research experience (CURE) to many undergraduates, especially those who otherwise do not receive collaborative research experience through traditional research paths, must be shared with other instructors., (© 2024 The Authors. Biochemistry and Molecular Biology Education published by Wiley Periodicals LLC on behalf of International Union of Biochemistry and Molecular Biology.)
- Published
- 2024
- Full Text
- View/download PDF
9. Exploring the biofunctionalities of lactic fermented cactus pear ( Opuntia elatior Mill.) fruit beverage: an exotic superfood.
- Author
-
Kathiriya MR, Vekariya Y, and Hati S
- Abstract
Cactus pear fruit is known with many health benefits in ethnomedicine of countries like Mexico, Portugal, Chine, India etc. The study was aimed to develop biofunctional lactic fermented cactus pear fruit beverage to add values to the medicinal fruit. The processing parameters such as quantity of freeze dried cactus pear fruit powder, sucrose and incubation time were optimised using response surface methodology. The optimized product was then subjected to proximate compositional, physicochemical, biofunctional and microbial analysis. The lactic fermented cactus pear fruit beverage was prepared by mixing 12% [w/v] freeze dried cactus pear fruit powder and 3% sucrose in water, then pasteurised and inoculated with 3% Lactobacillus fermentum MTCC 25515 and Lactobacillus rhamnosus M9, then incubated at 37 °C for 6 h. The moisture content of the beverage was 87.77% and major constituent was carbohydrate (9.58% per wet matter basis). The 100 mL beverage contains 89.84 mg GAE phenolic compounds, 5.86 mg QE flavonoids, 71.82 mg betacyanin, 28.08 mg betaxanthin, 10.59 mg ascorbic acid. The beverage also exhibited 58% ABTS antioxidant activity. The beverage was shelf stable for 20 days at 7 ± 1 °C. Such a biofunctional beverage loaded with antioxidant potential can be consumed as refreshing drink., Competing Interests: Conflict of interestAll the authors declare that there is no conflict of interest., (© Association of Food Scientists & Technologists (India) 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.)
- Published
- 2024
- Full Text
- View/download PDF
10. Peptidomics-based identification of antihypertensive and antidiabetic peptides from sheep milk fermented using Limosilactobacillus fermentum KGL4 MTCC 25515 with anti-inflammatory activity: in silico , in vitro , and molecular docking studies.
- Author
-
Pipaliya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Singh BP, Paul S, Liu Z, Sarkar P, Patel A, and Hati S
- Abstract
This study investigated the synthesis of bioactive peptides from sheep milk through fermentation with Limosilactobacillus fermentum KGL4 MTCC 25515 strain and assessed lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition activities during the fermentation process. The study observed the highest activities, reaching 74.82%, 70.02%, 72.19%, and 67.08% (lipase inhibition, ACE inhibition, α-glucosidase inhibition, and α-amylase inhibition) after 48 h at 37°C, respectively. Growth optimization experiments revealed that a 2.5% inoculation rate after 48 h of fermentation time resulted in the highest proteolytic activity at 9.88 mg/mL. Additionally, fractions with less than 3 kDa of molecular weight exhibited superior ACE-inhibition and anti-diabetic activities compared to other fractions. Fermentation of sheep milk with KGL4 led to a significant reduction in the excessive production of NO, TNF-α, IL-6, and IL-1β produced in RAW 267.4 cells upon treatment with LPS. Peptides were purified utilizing SDS-PAGE and electrophoresis on 2D gels, identifying a maximum number of proteins bands ranging 10-70 kDa. Peptide sequences were cross-referenced with AHTPDB and BIOPEP databases, confirming potential antihypertensive and antidiabetic properties. Notably, the peptide (GPFPILV) exhibited the highest HPEPDOCK score against both α-amylase and ACE., Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The authors declare that they were an editorial board member of Frontiers at the time of submission. This had no impact on the peer review process and final decision., (Copyright © 2024 Pipaliya, Basaiawmoit, Sakure, Maurya, Bishnoi, Kondepudi, Singh, Paul, Liu, Sarkar, Patel and Hati.)
- Published
- 2024
- Full Text
- View/download PDF
11. Insights into the Mechanism of Tryptophan Fluorescence Quenching due to Synthetic Crowding Agents: A Combined Experimental and Computational Study.
- Author
-
Fossum CJ, Johnson BOV, Golde ST, Kielman AJ, Finke B, Smith MA, Lowater HR, Laatsch BF, Bhattacharyya S, and Hati S
- Abstract
Intrinsic tryptophan fluorescence spectroscopy is an important tool for examining the effects of molecular crowding and confinement on the structure, dynamics, and function of proteins. Synthetic crowders such as dextran, ficoll, polyethylene glycols, polyvinylpyrrolidone, and their respective monomers are used to mimic crowded intracellular environments. Interactions of these synthetic crowders with tryptophan and the subsequent impact on its fluorescence properties are therefore critically important for understanding the possible interference created by these crowders. In the present study, the effects of polymer and monomer crowders on tryptophan fluorescence were assessed by using experimental and computational approaches. The results of this study demonstrated that both polymer and monomer crowders have an impact on the tryptophan fluorescence intensity; however, the molecular mechanisms of quenching were different. Using Stern-Volmer plots and a temperature variation study, a physical basis for the quenching mechanism of commonly used synthetic crowders was established. The quenching of free tryptophan was found to involve static, dynamic, and sphere-of-action mechanisms. In parallel, computational studies employing Kohn-Sham density functional theory provided a deeper insight into the effects of intermolecular interactions and solvation, resulting in differing quenching modes for these crowders. Taken together, the study offers new physical insights into the quenching mechanisms of some commonly used monomer and polymer synthetic crowders., Competing Interests: The authors declare no competing financial interest., (© 2023 The Authors. Published by American Chemical Society.)
- Published
- 2023
- Full Text
- View/download PDF
12. Molecular binding mechanism and novel antidiabetic and anti-hypertensive bioactive peptides from fermented camel milk with anti-inflammatory activity in raw macrophages cell lines.
- Author
-
Shukla P, Sakure A, Basaiawmoit B, Khakhariya R, Maurya R, Bishnoi M, Kondepudi KK, Liu Z, Padhi S, Rai AK, and Hati S
- Subjects
- Mice, Animals, Hypoglycemic Agents, Cell Line, Macrophages metabolism, Anti-Inflammatory Agents pharmacology, Anti-Inflammatory Agents metabolism, Interleukin-6 metabolism, Tumor Necrosis Factor-alpha metabolism, Fermentation, Antihypertensive Agents pharmacology, Camelus metabolism
- Abstract
The investigation was to determine the effect of camel milk fermented with Limosilactobacillus fermentum KGL4 (MTCC 25515) on ACE-inhibiting, anti-inflammatory, and diabetes-preventing properties and also to release the novel peptides with antidiabetic and anti-hypertensive attributes with molecular interaction studies. Growth conditions were optimised on the basis of total peptide production by inoculating the culture in camel milk at different rates (1.5, 2.0, and 2.5%) along with different incubation periods (12, 24, 36, and 48 h). However, after 48 h of fermentation with a 2.5% rate of inoculum, the highest proteolytic activity was obtained. Reverse phase high-pressure liquid chromatography (RP-HPLC) was used to calculate the % Rpa from permeates of 3 kDa and 10 kDa fractions. Molecular weight distributions of fermented and unfermented camel milk protein fractions were compared using SDS-PAGE. Spots obtained from 2D gel electrophoresis were separated on the basis of pH and molecular weight. Spots obtained from 2D gel were digested with trypsin, and the digested samples were subjected to RP-LC/MS for the generation of peptide sequences. The inhibition of tumour necrosis factor alpha, interleukin-6, and interleukin-1 during fermentation was studied using RAW 264.7 macrophages. In the study, fermented camel milk with KGL4 (CMKGL4) inhibited LPS-induced nitric oxide (NO) production and pro-inflammatory cytokine production (TNF-α, IL-6, and IL-1β) by the murine macrophages. The results showed that the peptide structures (YLEELHRLNK and YLQELYPHSSLKVRPILK) exhibited considerable binding affinity against hPAM and hMGA during molecular interaction studies., (© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
13. Superhydrophobic Surface Modification of Polymer Microneedles Enables Fabrication of Multimodal Surface-Enhanced Raman Spectroscopy and Mass Spectrometry Substrates for Synthetic Drug Detection in Blood Plasma.
- Author
-
Simas MV, Olaniyan PO, Hati S, Davis GA Jr, Anspach G, Goodpaster JV, Manicke NE, and Sardar R
- Abstract
Microneedles are widely used substrates for various chemical and biological sensing applications utilizing surface-enhanced Raman spectroscopy (SERS), which is indeed a highly sensitive and specific analytical approach. This article reports the fabrication of a nanoparticle (NP)-decorated microneedle substrate that is both a SERS substrate and a substrate-supported electrospray ionization (ssESI) mass spectrometry (MS) sample ionization platform. Polymeric ligand-functionalized gold nanorods (Au NRs) are adsorbed onto superhydrophobic surface-modified polydimethylsiloxane (PDMS) microneedles through the control of various interfacial interactions. We show that the chain length of the polymer ligands dictates the NR adsorption process. Importantly, assembling Au NRs onto the micrometer-diameter needle tips allows the formation of highly concentrated electromagnetic hot spots, which provide the SERS enhancement factor as high as 1.0 × 10
6 . The micrometer-sized area of the microneedle top and high electromagnetic field enhancement of our system can be loosely compared with tip-enhanced Raman spectroscopy, where the apex of a plasmonic NP-functionalized sharp probe produces high-intensity plasmonic hot spots. Utilizing our NR-decorated microneedle substrates, the synthetic drugs fentanyl and alprazolam are analyzed with a subpicomolar limit of detection. Further analysis of drug-molecule interactions on the NR surface utilizing the Langmuir adsorption model suggests that the higher polarizability of fentanyl allows for a stronger interaction with hydrophilic polymer layers on the NR surface. We further demonstrate the translational aspect of the microneedle substrate for both SERS- and ssESI-MS-based detection of these two potent drugs in 10 drug-of-abuse (DOA) patient plasma samples with minimal preanalysis sample preparation steps. Chemometric analysis for the SERS-based detection shows a very good classification between fentanyl, alprazolam, or a mixture thereof in our selected 10 samples. Most importantly, ssESI-MS analysis also successfully identifies fentanyl or alprazolam in these same 10 DOA plasma samples. We believe that our multimodal detection approach presented herein is a highly versatile detection technology that can be applicable to the detection of any analyte type without performing any complicated sample preparation.- Published
- 2023
- Full Text
- View/download PDF
14. Hybrid Metal-Ligand Interfacial Dipole Engineering of Functional Plasmonic Nanostructures for Extraordinary Responses of Optoelectronic Properties.
- Author
-
Hati S, Yang X, Gupta P, Muhoberac BB, Pu J, Zhang J, and Sardar R
- Abstract
Programmable manipulation of inorganic-organic interfacial electronic properties of ligand-functionalized plasmonic nanoparticles (NPs) is the key parameter dictating their applications such as catalysis, photovoltaics, and biosensing. Here we report the localized surface plasmon resonance (LSPR) properties of gold triangular nanoprisms (Au TNPs) in solid state that are functionalized with dipolar, conjugated ligands. A library of thiocinnamate ligands with varying surface dipole moments were used to functionalize TNPs, which results in ∼150 nm reversible tunability of LSPR peak wavelength with significant peak broadening (∼230 meV). The highly adjustable chemical system of thiocinnamate ligands is capable of shifting the Au work function down to 2.4 eV versus vacuum, i.e., ∼2.9 eV lower than a clean Au (111) surface, and this work function can be modulated up to 3.3 eV, the largest value reported to date through the formation of organothiolate SAMs on Au. Interestingly, the magnitude of plasmonic responses and work function modulation is NP shape dependent. By combining first-principles calculations and experiments, we have established the mechanism of direct wave function delocalization of electrons residing near the Fermi level into hybrid electronic states that are mostly dictated by the inorganic-organic interfacial dipole moments. We determine that both interfacial dipole and hybrid electronic states, and vinyl conjugation together are the key to achieving such extraordinary changes in the optoelectronic properties of ligand-functionalized, plasmonic NPs. The present study provides a quantitative relationship describing how specifically constructed organic ligands can be used to control the interfacial properties of NPs and thus the plasmonic and electronic responses of these functional plasmonics for a wide range of plasmon-driven applications.
- Published
- 2023
- Full Text
- View/download PDF
15. Safety aspects, probiotic potentials of yeast and lactobacillus isolated from fermented foods in North-Eastern India, and its anti-inflammatory activity.
- Author
-
Hati S, Ramanuj K, Basaiawmoit B, Sreeja V, Maurya R, Bishnoi M, Kondepudi KK, and Mishra B
- Subjects
- Saccharomyces cerevisiae, Lactobacillus, Escherichia coli, Staphylococcus aureus, Anti-Inflammatory Agents, Probiotics, Fermented Foods
- Abstract
Lactobacillus and yeast obtained from fermented foods in North-East India were tested for safety and probiotic properties. All the lactobacilli and yeast tested negative for the catalase, indole, urease, phenylalanine, hemolysis, gelatin hydrolysis, and biogenic amine production tests, indicating that they are safe to use as probiotics in food supplements. Lactiplantibacillus plantarum KGL3A (accession no. MG722814) was capable of resisting the replicated gastric fluid (pH 2) till 2 h of exposure, whereas both KGL3A and Lacticaseibacillus rhamnosus K4E (accession no. KX950834.1) strains were able to resist pH 3 till 2 h of exposure with a reduction in overall viable cell count from 7.48 log CFU/mL to 1.09 log CFU/mL and 7.77 log CFU/mL to 0.83 log CFU/mL, respectively. In vitro gastric juice simulation conditions were tolerated by the yeast Saccharomyces cerevisiae WBS2A. The cell surface hydrophobicity (CSH) towards hydrocarbons (n-hexadecane) was seen highest in L. plantarum KGL3A (77.16± 0.84%) and Limosilactobacillus fermentum KGL4 accession no. MF951099 (72.60 ± 2.33%). The percentage auto-aggregation ranged from 8.70 to 25.53 after 2 h, which significantly increased to 10.50 to 26.94 during the fifth hour for cultures. Also, a higher percentage of co-aggregation was found for the culture L. rhamnosus K4E with S. typhi (34.18 ± 0.03%), E. coli (32.97 ± 0.02 %) and S. aureus (26.33 ± 0.06 %) and for the yeast S. cerevisiae WBS2A, a higher percentage of co-aggregation was found with Listeria monocytogenes (25.77 ± 0.22%). The antioxidant activity and proteolytic activity were found to be higher for Lactobacillus helveticus K14 and L. rhamnosus K4E. The proportion of decreased cholesterol was noticeably higher in KGL4 (29.65 ± 4.30%). β glucosidase activity was significantly higher in the L. fermentum KGL4 strain (0.359 ± 0.002), and α galactosidase activity was significantly higher in the L. rhamnosus K4E strain (0.415 ± 0.016). MTT assays suggested that KGL4 and WBS2A at a lower dose did not exhibit cytotoxicity., (© 2023. The Author(s) under exclusive licence to Sociedade Brasileira de Microbiologia.)
- Published
- 2023
- Full Text
- View/download PDF
16. Significance of Limosilactobacillus fermentum and Saccharomyces cerevisia e on the Growth Performance, Haematological Traits, Serum Biochemistry, Faecal and Caeca Microbiota of Broiler Chickens.
- Author
-
Hati S, Ramanuj K, Basaiawmoit B, Koringa P, Desai M, Ghodasara DJ, Joshi KV, Pathan M, V S, Bhagora NJ, Savaliya FP, and Mishra BK
- Abstract
Objective: The aim of the study was to supplement Lactobacillus and yeast in broiler feed by replacing immunomodulators to develop antibiotic free meat and egg production by analyzing broiler performance, haematological traits, serum biochemistry, histopathology, fecal bacterial count, and metagenomic analysis of broiler ceca., Method: Two cultures i.e. KGL4 ( Limosilactobacillus fermentum MTCC 25515) and WBS2A ( Saccharomyces cerevisiae GI: MG101828) were considered for the evaluation of Broiler chicken's health and growth during 42 days study without supplementing immunomodulators and commercial probiotics in poultry feeds. The 96-day-old broiler chickens were grouped into: T1 [Control: basal diet + immunomodulatory factor and commercial probiotic], T2 [Basal diet without immunomodulatory factor and commercial probiotic + KGL4 (10
8 CFU/mL), T3 [Basal diet without immunomodulatory factor and commercial probiotic + WBS2A (107 CFU/mL), and T4 [Basal diet without immunomodulatory factor and commercial probiotic + KGL4 + WBS2A in a 1:1 ratio] (Institutional Animal Ethics Committee (IAEC) No. 365/PRS/2022). The following parameters, i.e., body weight gain, feed consumption ratio (FCR), white blood cell count (WBC), red blood cell count (RBC), hemoglobin content, platelet count, cholesterol content, triglycerides, high density lipoprotein (HDL), very low-density lipoprotein (VLDL), fecal counts and metagenomic analysis of broiler ceca samples, were measured., Results: In the study, amongst various traits, the overall performance of the group treated along with Limosilactobacillus fermentum (KGL4) showed improved results as compared to control group. Limosilactobacillus fermentum (KGL4) treated group had higher body weight gain (2583.04 ± 35.421 g), FCR (1.60 ± 0.019), WBC (235.60 ± 2.562 × 103 /µL), hemoglobin content (14.10 ± 0.442 g/dl), and HDL (131.40 ± 11.400 mg/dl). The investigation did not show significant variations in the relative proportions of genus or phylum among various groups during metagenomic analysis of ceca samples. There was also an improvement in haematological traits; no evidence of necrosis in heart, intestine and liver tissues., Conclusions: The present study conclude that it is safe to feed Limosilactobacillus fermentum and Saccharomyces cerevisiae to broilers as feed supplements and also supports the current knowledge regarding the use of yeast and lactic acid bacteria as an effective alternative stimulant for maintaining health and growth of broiler chickens.- Published
- 2023
- Full Text
- View/download PDF
17. Fabrication and 3D printing of Pickering emulsion gel based on Hypsizygus marmoreus by-products protein.
- Author
-
Xu D, Xing X, Chitrakar B, Li H, Hu L, Zhang J, Zhu X, Yao L, Hati S, Liu Z, and Mo H
- Abstract
Pickering emulsion gel (PEG) stabilized by the protein extracted from the by-product of Hypsizygus marmoreus , combining with xanthan gum (XG), was formulated as 3D printing ink. Hydrogen bonds are formed in XG/protein hybrid particles. Afterwards, PEG was developed. Results indicated that it has shear-thinning properties. The apparent viscosity, yield stress, Elastic modulus (G') and gel strength increased with the increased XG addition, while the size of emulsion decreased. XG incorporation improved the 3D printing performance with desired self-supporting capability and printing precision if its concentration reached 2.0% (w/v). This study provides ideas for the application of Hypsizygus marmoreus by-products protein in stabilizing PEG used for 3D printing, which has a potential to replace traditional hydrogenated cream for cake decoration., Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (© 2023 The Author(s).)
- Published
- 2023
- Full Text
- View/download PDF
18. S -Alkylation of dithiocarbamates via a hydrogen borrowing reaction strategy using alcohols as alkylating agents.
- Author
-
P H, Hati S, and Dey R
- Abstract
Herein, we report an operationally simple, environmentally benign and scalable approach towards the synthesis of S -benzyl/alkyl dithiocarbamates via a hydrogen borrowing reaction between alcohols and dithiocarbamate anions catalyzed using a hydroxyapatite-supported copper nano-catalyst. This strategy has a broad substrate scope and offers high yields of products using inexpensive and readily available alcohols as starting materials. The catalyst was prepared by easy and straightforward methods and analyzed by several analytical techniques, e.g. , FESEM, HR-TEM, BET, XRD, EDS, and XPS, demonstrating the anchoring of Cu nanoparticles on hydroxyapatite in the zero oxidation state.
- Published
- 2023
- Full Text
- View/download PDF
19. Purification and Characterization of Novel Antihypertensive and Antioxidative Peptides From Whey Protein Fermentate: In Vitro, In Silico, and Molecular Interactions Studies.
- Author
-
Chopada K, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Solanki D, Singh BP, Padhi S, Rai AK, Liu Z, Mishra BK, and Hati S
- Subjects
- Humans, Whey Proteins pharmacology, Angiotensin-Converting Enzyme Inhibitors pharmacology, Molecular Docking Simulation, Peptides pharmacology, Antihypertensive Agents pharmacology, Antioxidants pharmacology
- Abstract
Objective: The goal of this research was to purify and characterize the novel angiotensin-converting enzyme (ACE)-inhibitory and antioxidant peptides from fermented whey protein concentrate produced by Lactobacillus paracasei and Saccharomyces cerevisiae in a co-fermentation system., Method: Whey protein fermented with lactic acid bacteria and yeast culture was analyzed for antioxidative, ACE inhibition, as well as anti-inflammatory activity followed by SDS-PAGE, isoelectric focusing, and 2-dimensional (2D) analysis. Anti-inflammatory activity of whey protein fermentate was also studied on the RAW 264.7 cell line. The bioactive peptides were separated from the whey protein fermentate using reverse-phase high-performance liquid chromatography (RP-HPLC) and reverse-phase liquid chromatography mass spectrometry (RPLC/MS), and thus identification and characterization of purified bioactive peptide was performed., Results: Whey protein fermentate samples' bioactivity was analyzed at specific time intervals at 12, 24, 36, and 48 hours at 37 °C for M11 and at 25 °C for WBS2A. The development settings (incubation time [12, 24, 36, and 48 hours) and inoculation rates [1.5%, 2.0%, and 2.5%]) were optimized for peptide synthesis via the o-phthaldialdehyde (OPA) method (proteolytic activity). Maximum proteolytic activity was observed at 37 °C for M11 (6.50 mg/mL) and at 25 °C for WBS2A (8.59 mg/mL) for 48 hours of incubation. Protein profiling was carried out using SDS-PAGE and 2D gel electrophoresis, in which Sodium dodecyl-sulfate (SDS) exhibited protein bands in the 10- to 55-kDa range, while 2D showed protein bands varying from 10 to 70 kDa. Every spot from 2D was digested by trypsin and identified by RPLC/MS. Protein fractionations (3- and 10-kDa permeates) were carried out employing RP-HPLC. Whey protein fermentate has anti-inflammatory action in RAW 264.7 macrophages that have been exposed to lipopolysaccharide. A molecular docking system was also used to investigate the interactions of peptides (AFLDSRTR, ILGAFIQIITFR) with human myeloperoxidase enzyme., Conclusions: The antihypertensive and antioxidative peptides discovered from whey protein fermentate may be helpful in the design of pharmacologically active healthy ingredients in the upcoming years.
- Published
- 2023
- Full Text
- View/download PDF
20. Understanding the Probiotic Bacterial Responses Against Various Stresses in Food Matrix and Gastrointestinal Tract: A Review.
- Author
-
Kathiriya MR, Vekariya YV, and Hati S
- Subjects
- Humans, Bacteria, Oxidative Stress, Gastrointestinal Tract microbiology, Probiotics
- Abstract
Probiotic bacteria are known to have ability to tolerate inhospitable conditions experienced during food preparation, food storage, and gastrointestinal tract of consumer. As probiotics are living cells, they are adversely affected by the harsh environment of the carrier matrix as well as low pH, bile salts, oxidative stress, osmotic pressure, and commensal microflora of the host. To overcome the unfavorable environments, many probiotics switch on the cell-mediated protection mechanisms, which helps them to survive, acclimatize and remain operational in the harsh circumstances. In this review, we provide comprehensive understanding on the different stresses experienced by the probiotic when added in carrier food as well as during human gastrointestinal tract transit. Under such situation how these health beneficial bacteria protect themselves by activation of several defense systems and get adapted to the lethal environments., (© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2023
- Full Text
- View/download PDF
21. β Cell microRNAs Function as Molecular Hubs of Type 1 Diabetes Pathogenesis and as Biomarkers of Diabetes Risk.
- Author
-
Syed F, Krishnan P, Chang G, Langlais SR, Hati S, Yamada K, Lam AK, Talware S, Liu X, Sardar R, Liu J, Mirmira RG, and Evans-Molina C
- Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a crucial role in modulating gene expression and are enriched in cell-derived extracellular vesicles (EVs). We investigated whether miRNAs from human islets and islet-derived EVs could provide insight into β cell stress pathways activated during type 1 diabetes (T1D) evolution, therefore serving as potential disease biomarkers. We treated human islets from 10 cadaveric donors with IL-1β and IFN-γ to model T1D ex vivo . MicroRNAs were isolated from islets and islet-derived EVs, and small RNA sequencing was performed. We found 20 and 14 differentially expressed (DE) miRNAs in cytokine- versus control-treated islets and EVs, respectively. Interestingly, the miRNAs found in EVs were mostly different from those found in islets. Only two miRNAs, miR-155-5p and miR-146a-5p, were upregulated in both islets and EVs, suggesting selective sorting of miRNAs into EVs. We used machine learning algorithms to rank DE EV-associated miRNAs, and developed custom label-free Localized Surface Plasmon Resonance-based biosensors to measure top ranked EVs in human plasma. Results from this analysis revealed that miR-155, miR-146, miR-30c, and miR-802 were upregulated and miR-124-3p was downregulated in plasma-derived EVs from children with recent-onset T1D. In addition, miR-146 and miR-30c were upregulated in plasma-derived EVs of autoantibody positive (AAb+) children compared to matched non-diabetic controls, while miR-124 was downregulated in both T1D and AAb+ groups. Furthermore, single-molecule fluorescence in situ hybridization confirmed increased expression of the most highly upregulated islet miRNA, miR-155, in pancreatic sections from organ donors with AAb+ and T1D., Competing Interests: Competing interests: CEM has served on advisory boards related to T1D research clinical trial initiatives: Provention Bio, Dompe, Isla Technologies, and MaiCell Technologies. CEM serves as President of the Immunology of Diabetes Society (IDS), Co-Executive Director of the Network for Pancreatic Organ Donors with Diabetes (nPOD), Investigator and Study Chair in TrialNet, and Co-PI of the NIH Integrated Islet Distribution Program (IIDP). These activities have not dealt directly with topics covered in this manuscript. CEM and RGM are co-inventors on Patent (16/291,668): Extracellular Vesicle Ribonucleic Acid (RNA) Cargo as a Biomarker of Hyperglycemia and Type 1 Diabetes
- Published
- 2023
- Full Text
- View/download PDF
22. Incorporation of probiotics into 3D printed Pickering emulsion gel stabilized by tea protein/xanthan gum.
- Author
-
Xu D, Liu Z, An Z, Hu L, Li H, Mo H, and Hati S
- Subjects
- Emulsions, Tea, Rheology, Polysaccharides, Bacterial, Printing, Three-Dimensional
- Abstract
Different xanthan gum (XG) concentrations on the rheological/texture properties of Pickering emulsion (PE) gel stabilized by tea protein/xanthan gum (TP/XG) were studied to achieve an ink feasible for 3D printing. Afterwards, the effects of 3D printing and digestion process on the viability of probiotics were studied when encapsulated in the PE gel. Results indicated that gel strength, stability, storage modulus (G') and loss modulus (G″) increased as XG concentration increased. Nozzle diameter and printing temperature of 45 and 55℃ had no significant effect on probiotic's viability, but printing temperature of 65℃ reduced viable probiotics from 8.07 to 6.59 log CFU/g. No significant change of probiotics viability in 3D printed samples was observed during 11-day storage at 4℃. PE gel encapsulated probiotic's viability was significantly improved under heat treatment and simulated gastrointestinal environment. This study gives insights on the production of 3D printed foods using PE gel incorporating probiotics., Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2022 Elsevier Ltd. All rights reserved.)
- Published
- 2023
- Full Text
- View/download PDF
23. Production and Characterization of ACE Inhibitory and Anti-Diabetic Peptides from Buffalo and Camel Milk Fermented with Lactobacillus and Yeast: A Comparative Analysis with In Vitro, In Silico, and Molecular Interaction Study.
- Author
-
Khakhariya R, Basaiawmoit B, Sakure AA, Maurya R, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Liu Z, and Hati S
- Abstract
The investigation aimed at assessing a comparative study on the production and characterization of ACE inhibitory, anti-diabetic, and anti-inflammatory activities, along with the production of ACE inhibitory and anti-diabetic peptides through the fermentation of buffalo and camel milk by Limosilactobacillus fermentum (KGL4) and Saccharomyces cerevisiae (WBS2A). The angiotensin-converting enzyme (ACE) inhibitory and anti-diabetic properties were evaluated at particular time intervals (12, 24, 36, and 48 h) at 37 °C, and we discovered maximum activity at 37 °C after 48 h of incubation. The maximum ACE inhibitory, lipase inhibitory activities, alpha-glucosidase inhibitory, and alpha-amylase inhibitory activities were found in the fermented camel milk (77.96 ± 2.61, 73.85 ± 1.19, 85.37 ± 2.15, and 70.86 ± 1.02), as compared to the fermented buffalo milk (FBM) (75.25 ± 1.72, 61.79 ± 2.14, 80.09 ± 0.51, and 67.29 ± 1.75). Proteolytic activity was measured with different inoculation rates (1.5%, 2.0%, and 2.5%) and incubation times (12, 24, 36, and 48 h) to optimize the growth conditions. Maximum proteolysis was found at a 2.5% inoculation rate and at a 48 h incubation period in both fermented buffalo (9.14 ± 0.06) and camel milk (9.10 ± 0.17). SDS-PAGE and 2D gel electrophoresis were conducted for protein purification. The camel and buffalo milk that had not been fermented revealed protein bands ranging from 10 to 100 kDa and 10 to 75 kDa, respectively, whereas all the fermented samples showed bands ranging from 10 to 75 kDa. There were no visible protein bands in the permeates on SDS-PAGE. When fermented buffalo and camel milk were electrophoresed in 2D gel, 15 and 20 protein spots were detected, respectively. The protein spots in the 2D gel electrophoresis ranged in size from 20 to 75 kDa. To distinguish between different peptide fractions, water-soluble extract (WSE) fractions of ultrafiltration (3 and 10 kDa retentate and permeate) of fermented camel and buffalo milk were employed in RP-HPLC (reversed-phase high-performance liquid chromatography). The impact of fermented buffalo and camel milk on inflammation induced by LPS (lipopolysaccharide) was also investigated in the RAW 264.7 cell line. Novel peptide sequences with ACE inhibitory and anti-diabetic properties were also analyzed on the anti-hypertensive database (AHTDB) and bioactive peptide (BIOPEP) database. We found the sequences SCQAQPTTMTR, EMPFPK, TTMPLW, HPHPHLSFMAIPPK, FFNDKIAK, ALPMHIR, IPAVFK, LDQWLCEK, and AVPYPQR from the fermented buffalo milk and the sequences TDVMPQWW, EKTFLLYSCPHR, SSHPYLEQLY, IDSGLYLGSNYITAIR, and FDEFLSQSCAPGSDPR from the fermented camel milk.
- Published
- 2023
- Full Text
- View/download PDF
24. Anti-Inflammatory, ACE Inhibitory, Antioxidative Activities and Release of Novel Antihypertensive and Antioxidative Peptides from Whey Protein Hydrolysate with Molecular Interactions.
- Author
-
Mansinhbhai CH, Sakure A, Liu Z, Maurya R, Das S, Basaiawmoit B, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Mishra BK, and Hati S
- Subjects
- Animals, Mice, Antioxidants pharmacology, Pepsin A metabolism, Whey metabolism, Peptides pharmacology, Antihypertensive Agents pharmacology, Protein Hydrolysates pharmacology
- Abstract
Objective: The aim of the study was to evaluate the whey protein hydrolysate with bio-functional attributes viz. antioxidative, anti-inflammatory and ACE inhibition efficacy and release of bioactive peptides with antioxidative and ACE-inhibitory activity by employing Pepsin., Method: The antioxidant, Anti-inflammatory, ACE inhibitory and proteolytic activities of the whey protein hydrolysates were studied followed by SDS-PAGE analysis and IEF. Anti-inflammatory activity of whey protein hydrolysate was also studied on RAW 264.7 cell line. The separation of the bioactive peptides from whey protein hydrolysate was achieved by RP-HPLC. The purified bioactive peptides were identified and characterized using RPLC/MS., Results: WPC (Whey protein concentrate) hydrolysate with pepsin showed proteolytic activity ranging between 14.46 and 18.87 mg/ml. Using the ABTS assay, the highest antioxidative activity was observed in 10 kDa retentate (84.50%) and 3 kDa retentate (85.96%), followed by the highest proteolytic activity (13.83 mg/ml) and ACE inhibitory activity (58.37%) in a 5% WPC solution at 65 °C after 8 h of pepsin hydrolysis. When the protein hydrolysate concentration was low, the production of proinflammatory cytokines by lipopolysaccharide-treated murine macrophages (RAW 264.7) was reduced. SDS-PAGE results exhibited very little protein bands when comparing with WPC hydrolysates to insoluble WPC. There were no protein spots on 2 D gel electrophoresis and "in-solution trypsin digestion" technique have been utilized to digest protein samples directly from WPC hydrolysates. Novel antioxidative peptides and ACE inhibitory peptides were also observed by comparing two databases, i.e., BIOPEP and AHTPDB respectively. The peptide sequences used in this study were found to have excellent potential to be used as inhibitors of hACE as all of them were able to show substantial interactions against the enzyme's active site., Conclusions: The antihypertensive and antioxidative peptides from whey protein hydrolysates may be beneficial for the future development of physiologically active functional foods. Further, in vivo investigations are required to establish the health claim for each individual bioactive peptide from whey protein hydrolysate., Supplemental data for this article is available online at.
- Published
- 2023
- Full Text
- View/download PDF
25. Polyethylene Glycol 20k. Does It Fluoresce?
- Author
-
Laatsch BF, Brandt M, Finke B, Fossum CJ, Wackett MJ, Lowater HR, Narkiewicz-Jodko A, Le CN, Yang T, Glogowski EM, Bailey-Hartsel SC, Bhattacharyya S, and Hati S
- Abstract
Polyethylene glycol (PEG) is a polyether compound commonly used in biological research and medicine because it is biologically inert. This simple polymer exists in variable chain lengths (and molecular weights). As they are devoid of any contiguous π-system, PEGs are expected to lack fluorescence properties. However, recent studies suggested the occurrence of fluorescence properties in non-traditional fluorophores like PEGs. Herein, a thorough investigation has been conducted to explore if PEG 20k fluoresces. Results of this combined experimental and computational study suggested that although PEG 20k could exhibit "through-space" delocalization of lone pairs of electrons in aggregates/clusters, formed via intermolecular and intramolecular interactions, the actual contributor of fluorescence between 300 and 400 nm is the stabilizer molecule, i.e., 3- tert -butyl-4-hydroxyanisole present in the commercially available PEG 20k. Therefore, the reported fluorescence properties of PEG should be taken with a grain of salt, warranting further investigation., Competing Interests: The authors declare no competing financial interest., (© 2023 The Authors. Published by American Chemical Society.)
- Published
- 2023
- Full Text
- View/download PDF
26. Amplification-Free, High-Throughput Nanoplasmonic Quantification of Circulating MicroRNAs in Unprocessed Plasma Microsamples for Earlier Pancreatic Cancer Detection.
- Author
-
Masterson AN, Chowdhury NN, Fang Y, Yip-Schneider MT, Hati S, Gupta P, Cao S, Wu H, Schmidt CM, Fishel ML, and Sardar R
- Subjects
- Humans, Biomarkers, Tumor genetics, Pancreatic Neoplasms, Circulating MicroRNA genetics, MicroRNAs genetics, Pancreatic Neoplasms diagnosis, Pancreatic Neoplasms genetics
- Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a deadly malignancy that is often detected at an advanced stage. Earlier diagnosis of PDAC is key to reducing mortality. Circulating biomarkers such as microRNAs are gaining interest, but existing technologies require large sample volumes, amplification steps, extensive biofluid processing, lack sensitivity, and are low-throughput. Here, we present an advanced nanoplasmonic sensor for the highly sensitive, amplification-free detection and quantification of microRNAs (microRNA-10b, microRNA-let7a) from unprocessed plasma microsamples. The sensor construct utilizes uniquely designed -ssDNA receptors attached to gold triangular nanoprisms, which display unique localized surface plasmon resonance (LSPR) properties, in a multiwell plate format. The formation of -ssDNA/microRNA duplex controls the nanostructure-biomolecule interfacial electronic interactions to promote the charge transfer/exciton delocalization processes and enhance the LSPR responses to achieve attomolar (10
-18 M) limit of detection (LOD) in human plasma. This improve LOD allows the fabrication of a high-throughput assay in a 384-well plate format. The performance of nanoplasmonic sensors for microRNA detection was further assessed by comparing with the qRT-PCR assay of 15 PDAC patient plasma samples that shows a positive correlation between these two assays with the Pearson correlation coefficient value >0.86. Evaluation of >170 clinical samples reveals that oncogenic microRNA-10b and tumor suppressor microRNA-let7a levels can individually differentiate PDAC from chronic pancreatitis and normal controls with >94% sensitivity and >94% specificity at a 95% confidence interval (CI). Furthermore, combining both oncogenic and tumor suppressor microRNA levels significantly improves differentiation of PDAC stages I and II versus III and IV with >91% and 87% sensitivity and specificity, respectively, in comparison to the sensitivity and specificity values for individual microRNAs. Moreover, we show that the level of microRNAs varies substantially in pre- and post-surgery PDAC patients ( n = 75). Taken together, this ultrasensitive nanoplasmonic sensor with excellent sensitivity and specificity is capable of assaying multiple biomarkers simultaneously and may facilitate early detection of PDAC to improve patient care.- Published
- 2023
- Full Text
- View/download PDF
27. Genomic and probiotic attributes of Lactobacillus strains from rice-based fermented foods of North Eastern India.
- Author
-
Mishra BK, Das S, Nandy SK, Patel M, and Hati S
- Abstract
The probiotic attributes and genomic profiles of amylase-producing Lactobacillus strains from rice-based fermented foods of Meghalaya in the North-Eastern India were evaluated in the study. A preliminary screening of 17 lactic acid bacteria strains was performed based on their starch hydrolysis and glucoamylase activities. Out of 17 strains, 5 strains ( L. fermentum KGL4, L. rhamnosus RNS4, L. fermentum WTS4, L. fermentum KGL2, and L. rhamnosus KGL3A) were selected for further characterization of different probiotic attributes. Whole-genome sequencing of two of the best strains was carried out using a shotgun sequencing platform based on their rich probiotic attributes. The EPS production was in the range of 2.89-3.92 mg/mL. KGL2 (41.5%) and KGL3A (41%) showed the highest antioxidant activity. The highest antibiotic susceptibility was exhibited by all the five Lactobacillus strains against ampicillin, ranging from 24.66 to 27.33 mm. The lactobacilli isolates used in the study could survive the simulated gastric/intestinal juices. Genomic characterization of KGL4 and KGL3A illustrated their possible adherence to the intestinal wall, specialized metabolic patterns, and possible role in boosting host immunity., Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05633-8., Competing Interests: Conflicts of interestAll the authors declare that there is no conflict of interest., (© Association of Food Scientists & Technologists (India) 2022, Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.)
- Published
- 2023
- Full Text
- View/download PDF
28. Significance of Lactobacillus fermentum on Antioxidative and Anti-Inflammatory Activities and Ultrafiltration Peptide Fractions as Potential Sources of Antioxidative Peptides from Fermented Camel Milk (Indian Breed).
- Author
-
Patel D, Sakure A, Lodha D, Basaiawmoit B, Maurya R, Das S, Bishnoi M, Kondepudi KK, and Hati S
- Subjects
- Animals, Camelus metabolism, Antioxidants pharmacology, Ultrafiltration, Peptides pharmacology, Anti-Inflammatory Agents pharmacology, Milk chemistry, Limosilactobacillus fermentum
- Abstract
Objective: The present study aimed to assess the bio-functional analysis of camel milk viz. anti-oxidative, anti-inflammatory activities using potent Lactobacillus fermentum (KGL4) strain through fermentation and also to release the bioactive peptides during fermentation., Method: The antioxidant and proteolytic activities of the fermented camel milk were studied followed by SDS-PAGE analysis and 2 D PAGE. The separations of the bioactive peptides of water-soluble extract (WSE) of 3 and 10 kDa (Permeates & Retentates) were achieved by RP-HPLC. The purified bioactive peptides were identified and characterized using RPLC/MS and the effect of WSE of camel milk fermented with KGL4 on lipopolysaccharide (LPS)/endotoxin-induced inflammation in RAW 264.7 macrophages were also studied., Results: The maximal activity was observed in ABTS assay (64.03%), then in hydroxyl free radical scavenging assay, and minimal activity was observed in superoxide free radical assay (57.75%). ABTS assay was significantly (P < 0.05) higher than other assays. MTT assay was performed on WSE of camel milk fermented with KGL4 using treated macrophage cells with different concentrations and found the decreasing range of cell viability at 0.25 mg/mL treatment which was non-significant. 7.80 mg/ml peptide production was found after 48 h of fermentation using the OPA method. Further, WSE of fermented camel milk was separated and analyzed their protein profiles using SDS-PAGE and 2 D-PAGE techniques. Here, many new peptides were found in camel milk when fermented with KGL4 strain. Each protein sequence was characterized through bioinformatic tools, including SWISS-PROT & PIR protein databases. Novel bioactive anti-oxidative peptides were found by searching in the BIOPEP database., Conclusions: The present study suggests that the L. fermentum KGL4 strain could be explored to produce novel antioxidative peptides from fermented camel milk (Indian breed).
- Published
- 2023
- Full Text
- View/download PDF
29. Exploring the potential of Lacticaseibacillus paracasei M11 on antidiabetic, anti-inflammatory, and ACE inhibitory effects of fermented dromedary camel milk (Camelus dromedaries) and the release of antidiabetic and anti-hypertensive peptides.
- Author
-
Shukla P, Sakure A, Pipaliya R, Basaiawmoit B, Maurya R, Bishnoi M, Kondepudi KK, and Hati S
- Subjects
- Animals, Milk chemistry, Camelus metabolism, Lacticaseibacillus, Peptidyl-Dipeptidase A, Hypoglycemic Agents pharmacology, Hypoglycemic Agents analysis, Tumor Necrosis Factor-alpha genetics, Interleukin-6, Lipopolysaccharides, Peptides chemistry, Antihypertensive Agents, Hypertension
- Abstract
The goal of this investigation was to find antidiabetic peptides and inhibit angiotensin converting enzyme (ACE) in Lacticaseibacillus paracasei (M11) fermented dromedary camel milk (Camelus dromedaries). According to the findings, the rate of antidiabetic activity increased along with the incubation periods and reached its peak after 48 hr of fermentation. The inhibitions of α-amylase, α-glucosidase, and lipase were 80.75, 59.62, and 65.46%, respectively. The inhibitory activity of ACE was 78.33%, and the proteolytic activity was 8.90 mg/mL. M11 at 0.25 mg/mL effectively suppressed LPS-induced pro-inflammatory cytokines and their mediators such as NO, TNF-α, IL-6, and IL-1β in RAW 264.7 cells. The rate of inoculum in the optimization phase was 1.5-2.5%, and the greatest proteolytic activity was observed after 48 hr of fermentation. The investigation of the above property in the ultrafiltered fermented milk exhibited the highest antidiabetic and ACE inhibition activities in the 3 kDa than 10 kDa fractions. The molecular weight was determined employing SDS-PAGE, and the six-peptide sequences were identified using 2D gel electrophoresis. Due to its high proteolytic activity, the L. paracasei strain has been reported to be useful in the production of ACE-inhibitory and antidiabetic peptides. Amino acid sequences such from ɑ1, ɑ2, and β-caseins have been identified within fermented camel milk by searching on online databases, including BIOPEP (for antidiabetic peptides) and AHTPDB (for hypertension peptides) to validate the antidiabetic and ACE-inhibitory actions of several peptides. PRACTICAL APPLICATIONS: The study aims to identify antidiabetic peptides and inhibit ACE in dromedary camel milk fermented with Lacticaseibacillus paracasei M11. Maximum antidiabetic and ACE-inhibitory actions of the fermented camel milk were observed in 3 kDa permeate fractions. Fermented camel milk significantly reduced the excessive TNF-α, IL-6, and IL-1β production in LPS-activated RAW 264.7 cells. RP-LC/MS was used to identify 6 bioactive peptides from dromedary fermented camel milk. This fermented camel milk could be used for the management of hypertension and diabetic related problems., (© 2022 Wiley Periodicals LLC.)
- Published
- 2022
- Full Text
- View/download PDF
30. Purification and characterization of antioxidative and antimicrobial peptides from lactic-fermented sheep milk.
- Author
-
Ashokbhai JK, Basaiawmoit B, Sakure A, Das S, Patil GB, Mankad M, and Hati S
- Abstract
This study aims to identify antioxidant and antimicrobial peptides from sheep milk produced using Lactobacillus plantarum (KGL3A). It was inferred that antioxidative and antimicrobial activities increased with increasing incubation time, and antioxidative properties (ABTS assay, superoxide free radical & hydroxyl free radical scavenging activity were 34.5, 34.7, and 29.2% respectively) and antimicrobial properties against Escherichia coli, S. typhimurium , E. faecalis , & B. cereus were 11.3, 12.7, 13.3, & 12.3 mm. However, inoculation of culture at a level of 2.5% and 48 h fermentation give the highest proteolysis activities. Fermented sheep milk fractions of 3 & 10 kDa were analysed for antioxidative and antimicrobial activity, and the 10 kDa permeate showed the highest ABTS assay. The hydroxyl free radical scavenging activity was greatest in 10 kDa retentate and superoxide free radical scavenging activity was observed in 3 kDa permeate (34.7, 43.4, and 34.6%, respectively). Antimicrobial activity of 10 kDa retentate against B. cereus & E. coli (13.3 mm) was greater than 3 and 10 kDa retentate against S. typhimurium (13 mm) and 3 kDa retentate against E. faecalis (13.7 mm). The molecular weight of the protein was estimated using SDS-PAGE. On electrophoresis on a 2-D gel, 6 peptides were identified using RP-LC/MS. BIOPEP, a database for antioxidative and antimicrobial peptides, validated the antioxidative & antimicrobial activities of several peptides in sheep's milk that has been fermented. Sheep milk fermented using Lactobacillus could be considered a novel source of antioxidative and antimicrobial proteins., Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05493-2., Competing Interests: Conflict of interestAll the authors declare that there is no conflict of interest., (© Association of Food Scientists & Technologists (India) 2022.)
- Published
- 2022
- Full Text
- View/download PDF
31. Evolution of Stronger SARS-CoV-2 Variants as Revealed Through the Lens of Molecular Dynamics Simulations.
- Author
-
Wozney AJ, Smith MA, Abdrabbo M, Birch CM, Cicigoi KA, Dolan CC, Gerzema AEL, Hansen A, Henseler EJ, LaBerge B, Leavens CM, Le CN, Lindquist AC, Ludwig RK, O'Reilly MG, Reynolds JH, Sherman BA, Sillman HW, Smith MA, Snortheim MJ, Svaren LM, Vanderpas EC, Voon A, Wackett MJ, Weiss MM, Hati S, and Bhattacharyya S
- Subjects
- Angiotensin-Converting Enzyme 2 chemistry, Humans, Molecular Dynamics Simulation, Mutation, Protein Binding, Protein Interaction Mapping, Spike Glycoprotein, Coronavirus chemistry, Evolution, Molecular, SARS-CoV-2 genetics
- Abstract
Using molecular dynamics simulations, the protein-protein interactions of the receptor-binding domain of the wild-type and seven variants of the severe acute respiratory syndrome coronavirus 2 spike protein and the peptidase domain of human angiotensin-converting enzyme 2 were investigated. These variants are alpha, beta, gamma, delta, eta, kappa, and omicron. Using 100 ns simulation data, the residue interaction networks at the protein-protein interface were identified. Also, the impact of mutations on essential protein dynamics, backbone flexibility, and interaction energy of the simulated protein-protein complexes were studied. The protein-protein interface for the wild-type, delta, and omicron variants contained several stronger interactions, while the alpha, beta, gamma, eta, and kappa variants exhibited an opposite scenario as evident from the analysis of the inter-residue interaction distances and pair-wise interaction energies. The study reveals that two distinct residue networks at the central and right contact regions forge stronger binding affinity between the protein partners. The study provides a molecular-level insight into how enhanced transmissibility and infectivity by delta and omicron variants are most likely tied to a handful of interacting residues at the binding interface, which could potentially be utilized for future antibody constructs and structure-based antiviral drug design., (© 2022. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
- Published
- 2022
- Full Text
- View/download PDF
32. Characterization of Angiotensin I-Converting Enzyme (ACE) inhibitory peptides produced in fermented camel milk (Indian breed) by Lactobacillus acidophilus NCDC-15.
- Author
-
Solanki D, Sakure A, Prakash S, and Hati S
- Abstract
Fermented camel milk provides many health benefits like antidiabetic activity, anti-hypertensive activity etc. Fermented camel milk contains IPP or VPP rich ACE inhibitory peptides. The aim of this study was to spot the novel Angiotensin I-Converting Enzyme inhibitory peptides liberated by the potent proteolytic Lactobacillus acidophilus NCDC-15 from camel milk (Indian breed). NCDC-15 had exhibited maximum PepX activity (0.655) and ACE-inhibitory activity (78.33%) at 12 and 48 h of incubation at 37 °C respectively. Proteolytic activity was measured using o-phthaldialdehyde method and observed maximum (0.976 OD) at 2% of inoculation for 12 h of incubation at 37 °C. Water soluble extracts derived from fermented camel milk were ultrafiltered through 3 kDa, 5 kDa and 10 kDa membrane filters from which 3 kDa permeates (48.01% peptides production & 49.46% ACE-inhibition) and 10 kDa permeates (55.04% peptides production & 42.40% ACE-inhibition) had shown maximum peptides production and ACE-inhibitory activity. Overall, 24 peptides were identified from the samples of 3 kDa permeates [6 fractions (K1, L1, M1, N1, O1 and P1)] and 10 permeates [5 fractions (S, T, U, V and W)]. Novel peptide (AIGPVADLHI) was matched with k-casein in AHTPDB database and other peptides were also found matched with α and β-caseins of camel milk., Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-022-05357-9., Competing Interests: Conflict of interestAll the authors declare that there is no conflict of interest., (© Association of Food Scientists & Technologists (India) 2022.)
- Published
- 2022
- Full Text
- View/download PDF
33. Smartphone-Based Image Analysis for Rapid Evaluation of Kiwifruit Quality during Cold Storage.
- Author
-
Li H, Lv S, Feng L, Peng P, Hu L, Liu Z, Hati S, Bimal C, and Mo H
- Abstract
As a vitamin C-rich fruit, choosing the eating time for kiwifruit with the best quality during the shelf period is still a problem for consumers. This paper mainly focuses on the correlation between cold storage time, quality indexes, volatile flavor compounds of postharvest kiwifruit and RGB value readouts from photos taken by mobile phone. Results indicated that the R to B ratio values (Central R/B) and B to G ratio values (Central B/G) of the central site of kiwifruit were strongly associated with storage time and all quality indicators. The central R/B was negatively correlated with titratable acidity, vitamin C and 2,6-Nonadienal contents and firmness and positively correlated with storage time, weight loss, soluble solids content, total soluble sugars, total plate counts and 1,3-Cyclooctadiene. We provide a novel and smart strategy to predict the shelf life and quality parameters of kiwifruit by capturing and calculating RGB values using a smartphone.
- Published
- 2022
- Full Text
- View/download PDF
34. Significance of whey protein hydrolysate on anti-oxidative, ACE-inhibitory and anti-inflammatory activities and release of peptides with biofunctionality: an in vitro and in silico approach.
- Author
-
Mansinhbhai CH, Sakure A, Maurya R, Bishnoi M, Kondepudi KK, Das S, and Hati S
- Abstract
The study aimed to investigate potent antioxidant activities (ABTS assay, Hydroxyl free radical scavenging assay, and Superoxide free radical assay), ACE inhibitory activity, and anti-inflammatory activity in the WPC (whey protein concentrate) hydrolysate using Alcalase. The hydrolysis conditions (addition rate and incubation times) for peptide synthesis were also optimized using proteolytic activity. The generation of proinflammatory cytokines by lipopolysaccharide-treated murine macrophages was reduced when the protein hydrolysate concentration was low. In comparison to unhydrolyzed WPC, SDS-PAGE examination revealed no protein bands in WPC hydrolysates. Two-Dimensional (2D) gel electrophoresis did not show any protein spots. Using the 'In-solution trypsin digestion' approach, the trypsin digested protein samples were put into RPLC/MS for amino acid sequencing. Peptides were also identified using RPLC/MS on fractions of 3 and 10 kDa permeates and retentates. The MASCOT database was used to look up the raw masses of LC/MS. By comparing hydrolyzed whey protein to the BLASTp (NCBI), PIR, BIOPEP, and AHTPDB databases, novel antioxidative and ACE inhibitory peptides were reported., Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-021-05282-3., Competing Interests: Conflict of interestAll the authors declare that there is no conflict of interest., (© Association of Food Scientists & Technologists (India) 2021.)
- Published
- 2022
- Full Text
- View/download PDF
35. Peptidomic profiling of fermented goat milk: considering the fermentation-time dependent proteolysis by Lactobacillus and characterization of novel peptides with Antioxidative activity.
- Author
-
Panchal G, Sakure A, and Hati S
- Abstract
In this study, antioxidant activities were evaluated for goat milk fermented with Lactobacillus helveticus MTCC 5463. The fermentation conditions (inoculation rate and incubation time) were optimized by estimating proteolytic action of Lactobacillus. SDS-PAGE and 2D gel electrophoresis were carried out for identification of molecular weight and purification of identified peptides. 3 and 10 kDa peptides fractions were obtained through ultrafiltration and also by using RP-HPLC. Then, spots from 2D and fractions from RP-HPLC were also evaluated in RP-LC/MS for identification and characterization of peptides. Identified peptides were matched with online database of goat milk i.e. BLASTp (NCBI) and Protein information resource database (PIR) and subsequently, antioxidant activity of these peptides were also confirmed with BIOPEP database. However, antioxidative peptides from fermented goat milk with Lactobacillus helveticus MTCC 5463 could be produced in developing functional goat milk yoghurt., Supplementary Information: The online version contains supplementary material available at 10.1007/s13197-021-05243-w., Competing Interests: Conflict of interestAll the authors declare that there is no conflict of interest., (© Association of Food Scientists & Technologists (India) 2021.)
- Published
- 2022
- Full Text
- View/download PDF
36. In vivo Structure-Activity Relationship of Dihydromethysticin in Reducing Nicotine-Derived Nitrosamine Ketone (NNK)-Induced Lung DNA Damage against Lung Carcinogenesis in A/J Mice.
- Author
-
Hati S, Hu Q, Huo Z, Lu J, and Xing C
- Subjects
- Animals, Carcinogenesis chemically induced, Carcinogens pharmacology, DNA Damage, Ketones pharmacology, Lung, Mice, Nicotine adverse effects, Pyrones, Structure-Activity Relationship, Lung Neoplasms chemically induced, Lung Neoplasms drug therapy, Nitrosamines chemistry, Nitrosamines toxicity
- Abstract
Lung cancer is the leading cause of cancer-related deaths and chemoprevention should be developed. We recently identified dihydromethysticin (DHM) as a promising candidate to prevent NNK-induced lung tumorigenesis. To probe its mechanisms and facilitate its future translation, we investigated the structure-activity relationship of DHM on NNK-induced DNA damage in A/J mice. Twenty DHM analogs were designed and synthesized. Their activity in reducing NNK-induced DNA damage in the target lung tissues was evaluated. The unnatural enantiomer of DHM was identified to be more potent than the natural enantiomer. The methylenedioxy functional moiety did not tolerate modifications while the other functional groups (the lactone ring and the ethyl linker) accommodated various modifications. Importantly, analogs of high structural similarity to DHM with distinct efficacy in reducing NNK-induced DNA damage have been identified. They will serve as chemical probes to elucidate the mechanisms of DHM in blocking NNK-induced lung carcinogenesis., (© 2022 Wiley-VCH GmbH.)
- Published
- 2022
- Full Text
- View/download PDF
37. Bioactive peptides in the management of lifestyle-related diseases: Current trends and future perspectives.
- Author
-
Singh BP, Aluko RE, Hati S, and Solanki D
- Subjects
- Cholesterol, Humans, Life Style, Obesity drug therapy, Peptides chemistry, Diabetes Mellitus, Type 2 drug therapy, Diabetes Mellitus, Type 2 prevention & control
- Abstract
Lifestyle-related diseases constitute a major concern in the twenty-first century, with millions dying worldwide each year due to chosen lifestyles and associated complications such as obesity, type 2 diabetes, hypertension, and hypercholesterolemia. Although synthetic drugs have been shown to be quite effective in the treatment of these conditions, safety of these compounds remains a concern. Natural alternatives to drugs include food-derived peptides are now being explored for the prevention and treatment of lifestyle-related complications. Peptides are fragments nascent in the primary protein sequences and could impart health benefits beyond basic nutritional advantages. Evidence suggests that by controlling adipocyte differentiation and lipase activities, bioactive peptides may be able to prevent obesity. Bioactive peptides act as agents against type 2 diabetes because of their ability to inhibit enzymatic activities of DPP-IV, α-amylase, and α-glucosidase. Moreover, bioactive peptides can act as competitive inhibitors of angiotensin-converting enzyme, thus eliciting an antihypertensive effect. Bioactive peptides may have a hypocholesterolemic effect by inhibiting cholesterol metabolism pathways and cholesterol synthesis. This review addresses current knowledge of the impact of food-derived bioactive peptides on lifestyle diseases. In addition, future insights on the clinical trials, allergenicity, cytotoxicity, gastrointestinal stability, and regulatory approvals have also been considered.
- Published
- 2022
- Full Text
- View/download PDF
38. Current Trends and Applications of Food-derived Antihypertensive Peptides for the Management of Cardiovascular Disease.
- Author
-
Shukla P, Chopada K, Sakure A, and Hati S
- Subjects
- Angiotensin II, Angiotensin-Converting Enzyme Inhibitors pharmacology, Angiotensin-Converting Enzyme Inhibitors therapeutic use, Animals, Antihypertensive Agents pharmacology, Antihypertensive Agents therapeutic use, Meat, Nitric Oxide metabolism, Peptides pharmacology, Peptides therapeutic use, Cardiovascular Diseases drug therapy, Hypertension drug therapy
- Abstract
Food-derived antihypertensive peptides are considered a natural supplement for controlling hypertension. Food protein serves as a macronutrient and acts as a raw material for the biosynthesis of physiologically active peptides. Food sources, like milk and milk products, animal proteins such as meat, chicken, fish, eggs, and plant-derived proteins from food products like soy, rice, wheat, mushroom, and pumpkins contain higher quantities of antihypertensive peptides. The food-derived antihypertensive peptides can suppress the action of renin and the angiotensinconverting enzyme (ACE), which are mainly involved in the regulation of blood pressure by RAS. ACE inhibitory peptides enhance endothelial nitric oxide's biosynthesis, which increases nitric oxide production in vascular walls and encourages vasodilation. The peptides also inhibit the interaction between angiotensin II and its receptor, which helps reduce hypertension. This review explores the novel sources and applications of food-derived peptides for the management of hypertension., (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)
- Published
- 2022
- Full Text
- View/download PDF
39. AZD5438-PROTAC: A selective CDK2 degrader that protects against cisplatin- and noise-induced hearing loss.
- Author
-
Hati S, Zallocchi M, Hazlitt R, Li Y, Vijayakumar S, Min J, Rankovic Z, Lovas S, and Zuo J
- Subjects
- Animals, Antineoplastic Agents pharmacology, Cell Line, Cisplatin antagonists & inhibitors, Cisplatin pharmacology, Cyclin-Dependent Kinase 2 metabolism, Dose-Response Relationship, Drug, Hearing Loss, Noise-Induced metabolism, Humans, Imidazoles chemical synthesis, Imidazoles chemistry, Molecular Dynamics Simulation, Molecular Structure, Protective Agents chemical synthesis, Protective Agents chemistry, Protein Kinase Inhibitors chemical synthesis, Protein Kinase Inhibitors chemistry, Pyrimidines chemical synthesis, Pyrimidines chemistry, Structure-Activity Relationship, Zebrafish, Cyclin-Dependent Kinase 2 antagonists & inhibitors, Hearing Loss, Noise-Induced drug therapy, Imidazoles pharmacology, Protective Agents pharmacology, Protein Kinase Inhibitors pharmacology, Pyrimidines pharmacology
- Abstract
Cyclin-dependent kinase 2 (CDK2) is a potential therapeutic target for the treatment of hearing loss and cancer. Previously, we identified AZD5438 and AT7519-7 as potent inhibitors of CDK2, however, they also targeted additional kinases, leading to unwanted toxicities. Proteolysis Targeting Chimeras (PROTACs) are a new promising class of small molecules that can effectively direct specific proteins to proteasomal degradation. Herein we report the design, synthesis, and characterization of PROTACs of AT7519-7 and AZD5438 and the identification of PROTAC-8, an AZD5438-PROTAC, that exhibits selective, partial CDK2 degradation. Furthermore, PROTAC-8 protects against cisplatin ototoxicity and kainic acid excitotoxicity in zebrafish. Molecular dynamics simulations reveal the structural requirements for CDK2 degradation. Together, PROTAC-8 is among the first-in-class PROTACs with in vivo therapeutic activities and represents a new lead compound that can be further developed for better efficacy and selectivity for CDK2 degradation against hearing loss and cancer., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2021 Elsevier Masson SAS. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF
40. Pre-Existing Oxidative Stress Creates a Docking-Ready Conformation of the SARS-CoV-2 Receptor-Binding Domain.
- Author
-
Fossum CJ, Laatsch BF, Lowater HR, Narkiewicz-Jodko AW, Lonzarich L, Hati S, and Bhattacharyya S
- Abstract
The redox-dependent changes on the binding between the receptor-binding domain of the severe acute respiratory syndrome-coronavirus-2 spike protein and the peptidase domain of the human cell surface receptor angiotensin-converting enzyme II were investigated by performing molecular dynamics simulations. The reduced states of the protein partners were generated in silico by converting the disulfides to thiols. The role of redox transformation on the protein-protein binding affinity was assessed from the time-evolved structures after 200 ns simulations using electrostatic field calculations and implicit solvation. The present simulations revealed that the bending motion at the protein-protein interface is significantly altered when the disulfides are reduced to thiols. In the native complex, the presence of disulfide bonds preserves the structural complementarity of the protein partners and maintains the intrinsic conformational dynamics. Also, the study demonstrates that when already bound, the disulfide-to-thiol conversion of the receptor-binding domain has a limited impact on the binding of the spike protein to the receptor. However, if the reduction occurs before binding to the receptor, a spectacular conformational change of the receptor-binding domain occurs that fully impairs the binding. In other words, the formation of disulfide bonds, prevalent during oxidative stress, creates a conformation ready to bind to the receptor. Taken together, the present study demonstrates the role of pre-existing oxidative stress in elevating the binding affinity of the spike protein for the human receptor, offering future clues for alternate therapeutic possibilities., Competing Interests: The authors declare no competing financial interest., (© 2021 The Authors. Published by American Chemical Society.)
- Published
- 2021
- Full Text
- View/download PDF
41. Vitamin D and COVID-19: A review on the role of vitamin D in preventing and reducing the severity of COVID-19 infection.
- Author
-
Abdrabbo M, Birch CM, Brandt M, Cicigoi KA, Coffey SJ, Dolan CC, Dvorak H, Gehrke AC, Gerzema AEL, Hansen A, Henseler EJ, Huelsbeck AC, LaBerge B, Leavens CM, Le CN, Lindquist AC, Ludwig RK, Reynolds JH, Severson NJ, Sherman BA, Sillman HW, Smith MA, Smith MA, Snortheim MJ, Svaren LM, Vanderpas EC, Wackett MJ, Wozney AJ, Bhattacharyya S, and Hati S
- Subjects
- Angiotensin-Converting Enzyme 2 metabolism, Humans, Reactive Nitrogen Species metabolism, Reactive Oxygen Species metabolism, COVID-19 metabolism, COVID-19 pathology, COVID-19 prevention & control, Oxidative Stress drug effects, SARS-CoV-2 metabolism, Severity of Illness Index, Virus Internalization drug effects, Vitamin D therapeutic use
- Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a pathogenic coronavirus causing COVID-19 infection. The interaction between the SARS-CoV-2 spike protein and the human receptor angiotensin-converting enzyme 2, both of which contain several cysteine residues, is impacted by the disulfide-thiol balance in the host cell. The host cell redox status is affected by oxidative stress due to the imbalance between the reactive oxygen/nitrogen species and antioxidants. Recent studies have shown that Vitamin D supplementation could reduce oxidative stress. It has also been proposed that vitamin D at physiological concentration has preventive effects on many viral infections, including COVID-19. However, the molecular-level picture of the interplay of vitamin D deficiency, oxidative stress, and the severity of COVID-19 has remained unclear. Herein, we present a thorough review focusing on the possible molecular mechanism by which vitamin D could alter host cell redox status and block viral entry, thereby preventing COVID-19 infection or reducing the severity of the disease., (© 2021 The Protein Society.)
- Published
- 2021
- Full Text
- View/download PDF
42. Photoswitchable Machine-Engineered Plasmonic Nanosystem with High Optical Response for Ultrasensitive Detection of microRNAs and Proteins Adaptively.
- Author
-
Hati S, Langlais SR, Masterson AN, Liyanage T, Muhoberac BB, Kaimakliotis H, Johnson M, and Sardar R
- Subjects
- Gold, Humans, Surface Plasmon Resonance, Biosensing Techniques, Metal Nanoparticles, MicroRNAs
- Abstract
Modulating optoelectronic properties of inorganic nanostructures tethered with light-responsive molecular switches by their conformational change in the solid state is fundamentally important for advanced nanoscale-device fabrication, specifically in biosensing applications. Herein, we present an entirely new solid-state design approach employing the light-induced reversible conformational change of spiropyran (SP)-merocyanine (MC) covalently attached to gold triangular nanoprisms (Au TNPs) via alkylthiolate self-assembled monolayers to produce a large localized surface plasmon resonance response (∼24 nm). This shift is consistent with the increase in thickness of the local dielectric shell-surrounded TNPs and perhaps short-range dipole-dipole (permanent and induced) interactions between TNPs and the zwitterionic MC form. Water contact angle measurement and Raman spectroscopy characterization unequivocally prove the formation of a stable TNP-MC structural motif. Utilizing this form, we fabricated the first adaptable nanoplasmonic biosensor, which uses an identical structural motif for ultrasensitive, highly specific, and programmable detection of microRNAs and proteins at attomolar concentrations in standard human plasma and urine samples, and at femtomolar concentrations from bladder cancer patient plasma ( n = 10) and urine ( n = 10), respectively. Most importantly, the TNP-MC structural motif displays a strong binding affinity with receptor molecules (i.e., single-stranded DNA and antibody) producing a highly stable biosensor. Taken together, the TNP-MC structural motif represents a multifunctional super biosensor with the potential to expand clinical diagnostics through simplifying biosensor design and providing highly accurate disease diagnosis.
- Published
- 2021
- Full Text
- View/download PDF
43. Operating principles of circular toggle polygons.
- Author
-
Hati S, Duddu AS, and Jolly MK
- Subjects
- Models, Biological, Cell Differentiation genetics, Gene Regulatory Networks physiology
- Abstract
Decoding the dynamics of cellular decision-making and cell differentiation is a central question in cell and developmental biology. A common network motif involved in many cell-fate decisions is a mutually inhibitory feedback loop between two self-activating 'master regulators' A and B, also called as toggle switch. Typically, it can allow for three stable states-(high A, low B), (low A, high B) and (medium A, medium B). A toggle triad-three mutually repressing regulators A, B and C, i.e. three toggle switches arranged circularly (between A and B, between B and C, and between A and C)-can allow for six stable states: three 'single positive' and three 'double positive' ones. However, the operating principles of larger toggle polygons, i.e. toggle switches arranged circularly to form a polygon, remain unclear. Here, we simulate using both discrete and continuous methods the dynamics of different sized toggle polygons. We observed a pattern in their steady state frequency depending on whether the polygon was an even or odd numbered one. The even-numbered toggle polygons result in two dominant states with consecutive components of the network expressing alternating high and low levels. The odd-numbered toggle polygons, on the other hand, enable more number of states, usually twice the number of components with the states that follow 'circular permutation' patterns in their composition. Incorporating self-activations preserved these trends while increasing the frequency of multistability in the corresponding network. Our results offer insights into design principles of circular arrangement of regulatory units involved in cell-fate decision making, and can offer design strategies for synthesizing genetic circuits., (© 2021 IOP Publishing Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
44. Bioconversion and bioaccessibility of isoflavones from sogurt during in vitro digestion.
- Author
-
Ningtyas DW, Hati S, and Prakash S
- Subjects
- Chromatography, High Pressure Liquid, Chromatography, Reverse-Phase, Digestion, Genistein metabolism, Isoflavones analysis, Lactobacillus delbrueckii growth & development, Lactobacillus delbrueckii metabolism, Soy Milk metabolism, Streptococcus thermophilus growth & development, Streptococcus thermophilus metabolism, beta-Glucosidase metabolism, Isoflavones metabolism, Yogurt analysis
- Abstract
This study investigated the bioconversion and bioaccessibility of soy isoflavones produced in sogurt fermented with S. thermophilus and L. bulgaricus during in vitro digestion. The highest survivability of S. thermophilus (6.49 log cfu/mL) and L. bulgaricus (6.48 log cfu/mL) was in oral phase. In gastric phase, the total aglycones of sogurt (26.73 g/L) increased up to 20 times than control (1.21 g/L), with a significant increase in daidzein (17.05 g/L) and genistein (9.68 g/L). Addition of 8U of β-glucosidase into soymilk significantly increased the conversion of isoflavone in ENTII (daidzein: 0.46 g/L; genistein: 0.18 g/L) than in ENTI (daidzein: 0.33 g/L; genistein: 0.20 g/L). The particle size analysis and confocal micrographs of digesta also suggest the size of fat and protein in gastric phase to be smaller than in intestinal phase. The results indicate the prospective to develop soy-based fermented products capable of releasing high isoflavone in the digestive system., (Copyright © 2020. Published by Elsevier Ltd.)
- Published
- 2021
- Full Text
- View/download PDF
45. Characterization of quinoxaline derivatives for protection against iatrogenically induced hearing loss.
- Author
-
Zallocchi M, Hati S, Xu Z, Hausman W, Liu H, He DZ, and Zuo J
- Subjects
- Animals, Cells, Cultured, Fibroblasts, Mice, Zebrafish, Cell Death drug effects, Hearing Loss chemically induced, Hearing Loss drug therapy, Ototoxicity drug therapy, Protective Agents pharmacology, Quinoxalines pharmacology
- Abstract
Hair cell loss is the leading cause of hearing and balance disorders in humans. It can be caused by many factors, including noise, aging, and therapeutic agents. Previous studies have shown the therapeutic potential of quinoxaline against drug-induced ototoxicity. Here, we screened a library of 68 quinoxaline derivatives for protection against aminoglycoside-induced damage of hair cells from the zebrafish lateral line. We identified quinoxaline-5-carboxylic acid (Qx28) as the best quinoxaline derivative that provides robust protection against both aminoglycosides and cisplatin in zebrafish and mouse cochlear explants. FM1-43 and aminoglycoside uptake, as well as antibiotic efficacy studies, revealed that Qx28 is neither blocking the mechanotransduction channels nor interfering with aminoglycoside antibacterial activity, suggesting that it may be protecting the hair cells by directly counteracting the ototoxin's mechanism of action. Only when animals were incubated with higher doses of Qx28 did we observe a partial blockage of the mechanotransduction channels. Finally, we assessed the regulation of the NF-κB pathway in vitro in mouse embryonic fibroblasts and in vivo in zebrafish larvae. Those studies showed that Qx28 protects hair cells by blocking NF-κB canonical pathway activation. Thus, Qx28 is a promising and versatile otoprotectant that can act across different species and toxins.
- Published
- 2021
- Full Text
- View/download PDF
46. Enhancing Nonfouling and Sensitivity of Surface-Enhanced Raman Scattering Substrates for Potent Drug Analysis in Blood Plasma via Fabrication of a Flexible Plasmonic Patch.
- Author
-
Masterson AN, Hati S, Ren G, Liyanage T, Manicke NE, Goodpaster JV, and Sardar R
- Subjects
- Cocaine chemistry, Fentanyl chemistry, Forensic Toxicology methods, Gold chemistry, Heroin chemistry, Humans, Indoles chemistry, Limit of Detection, Mass Spectrometry, Metal Nanoparticles chemistry, Naphthalenes chemistry, Pharmaceutical Preparations, Plasma, Spectrum Analysis, Raman methods
- Abstract
Surface-enhanced Raman scattering (SERS) is an ultrasensitive analytical technique, which is capable of providing high specificity; thus, it can be used for toxicological drug assay (detection and quantification). However, SERS-based drug analysis directly in human biofluids requires mitigation of fouling and nonspecificity effects that commonly appeared from unwanted adsorption of endogenous biomolecules present in biofluids (e.g., blood plasma and serum) onto the SERS substrate. Here, we report a bottom-up fabrication strategy to prepare ultrasensitive SERS substrates, first, by functionalizing chemically synthesized gold triangular nanoprisms (Au TNPs) with poly(ethylene glycol)-thiolate in the solid state to avoid protein fouling and second, by generating flexible plasmonic patches to enhance SERS sensitivity via the formation of high-intensity electromagnetic hot spots. Poly(ethylene glycol)-thiolate-functionalized Au TNPs in the form of flexible plasmonic patches show a twofold-improved signal-to-noise ratio in comparison to triethylamine (TEA)-passivated Au TNPs. Furthermore, the plasmonic patch displays a SERS enhancement factor of 4.5 ×10
7 . Utilizing the Langmuir adsorption model, we determine the adsorption constant of drugs for two different surface ligands and observe that the drug molecules display stronger affinity for poly(ethylene glycol) ligands than TEA. Our density functional theory calculations unequivocally support the interaction between drug molecules and poly(ethylene glycol) moieties. Furthermore, the universality of the plasmonic patch for SERS-based drug detection is demonstrated for cocaine, JWH-018, and opioids (fentanyl, despropionyl fentanyl, and heroin) and binary mixture (trace amount of fentanyl in heroin) analyses. We demonstrate the applicability of flexible plasmonic patches for the selective assay of fentanyl at picogram/milliliter concentration levels from drug-of-abuse patients' blood plasma. The fentanyl concentration calculated in the patients' blood plasma from SERS analysis is in excellent agreement with the values determined using the paper spray ionization mass spectrometry technique. We believe that the flexible plasmonic patch fabrication strategy would be widely applicable to any plasmonic nanostructure for SERS-based chemical sensing for clinical toxicology and therapeutic drug monitoring.- Published
- 2021
- Full Text
- View/download PDF
47. Role of Oxidative Stress on SARS-CoV (SARS) and SARS-CoV-2 (COVID-19) Infection: A Review.
- Author
-
Suhail S, Zajac J, Fossum C, Lowater H, McCracken C, Severson N, Laatsch B, Narkiewicz-Jodko A, Johnson B, Liebau J, Bhattacharyya S, and Hati S
- Subjects
- Acetylcysteine pharmacology, Angiotensin-Converting Enzyme 2 metabolism, Animals, Antiviral Agents pharmacology, Drug Discovery, Humans, Models, Molecular, SARS-CoV-2 drug effects, Severe Acute Respiratory Syndrome drug therapy, Spike Glycoprotein, Coronavirus metabolism, Viral Envelope Proteins metabolism, COVID-19 Drug Treatment, COVID-19 metabolism, Oxidative Stress drug effects, Severe acute respiratory syndrome-related coronavirus physiology, SARS-CoV-2 physiology, Severe Acute Respiratory Syndrome metabolism
- Abstract
Novel coronavirus disease 2019 (COVID-19) has resulted in a global pandemic and is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Several studies have suggested that a precise disulfide-thiol balance is crucial for viral entry and fusion into the host cell and that oxidative stress generated from free radicals can affect this balance. Here, we reviewed the current knowledge about the role of oxidative stress on SARS-CoV and SARS-CoV-2 infections. We focused on the impact of antioxidants, like NADPH and glutathione, and redox proteins, such as thioredoxin and protein disulfide isomerase, that maintain the disulfide-thiol balance in the cell. The possible influence of these biomolecules on the binding of viral protein with the host cell angiotensin-converting enzyme II receptor protein as well as on the severity of COVID-19 infection was discussed.
- Published
- 2020
- Full Text
- View/download PDF
48. Optimization of electromagnetic hot spots in surface-enhanced Raman scattering substrates for an ultrasensitive drug assay of emergency department patients' plasma.
- Author
-
Liyanage T, Masterson AN, Hati S, Ren G, Manicke NE, Rusyniak DE, and Sardar R
- Subjects
- Electromagnetic Phenomena, Emergency Service, Hospital, Humans, Limit of Detection, Spectrum Analysis, Raman, Metal Nanoparticles, Pharmaceutical Preparations
- Abstract
Herein we report the programmable preparation of ultrasensitive surface-enhanced Raman scattering (SERS)-based nanoplasmonic superlattice substrates to assay fentanyl and cocaine (detection and quantification) from 10 μL aliquots of emergency department patient plasma without the need for purification steps. Highly homogeneous three-dimensional (3D) nanoplasmonic superlattices are generated through the droplet evaporation-based self-assembly process of chemically-synthesized, polyethylene glycol thiolate-coated gold triangular nanoprisms (Au TNPs). Close-packed, solid-state 3D superlattice substrates produce electromagnetic hot spots due to near-field plasmonic coupling of Au TNPs, which display unique localized surface plasmonic resonance properties. These uniquely prepared superlattice substrates enable strong SERS enhancement to achieve a parts-per-quadrillion limit of detection using the label-free SERS-based technique. Our reported limit of detection is at least 100-fold better than any known SERS substrates for the drug assay. Importantly, our density functional theory calculations show that a specific electronic interaction between the drug molecule and novel nanoplasmonic superlattice substrates plays a critical role that may trigger achieving this unprecedentedly high sensitivity. Additionally, we show high selectivity of the superlattice substrate in the SERS-based detection of analytes from different patient samples, which do and do not contain target analytes (i.e., fentanyl and/or cocaine). The demonstrated sensitivity and selectivity of 3D superlattice substrates for SERS-based drug analysis in real toxicological samples are expected to advance the field of measurement science, and forensic and clinical toxicology by obviating the need for complicated sample processing steps, long assay times, and the low sensitivity of existing "gold standard" analytical techniques including gas chromatography/mass spectrometry, liquid chromatography/mass spectrometry and enzyme-linked immunosorbent assays. Taken together, we believe that this entirely new and reproducible superlattice substrate for the SERS analysis will aid scientific, forensic, and healthcare communities to battle the drug overdose epidemic in the United States.
- Published
- 2020
- Full Text
- View/download PDF
49. Effects of Distal Mutations on Prolyl-Adenylate Formation of Escherichia coli Prolyl-tRNA Synthetase.
- Author
-
Zajac J, Anderson H, Adams L, Wangmo D, Suhail S, Almen A, Berns L, Coerber B, Dawson L, Hunger A, Jehn J, Johnson J, Plack N, Strasser S, Williams M, Bhattacharyya S, and Hati S
- Subjects
- Amino Acyl-tRNA Synthetases genetics, Amino Acyl-tRNA Synthetases metabolism, Catalysis, Catalytic Domain, Escherichia coli genetics, Escherichia coli Proteins genetics, Escherichia coli Proteins metabolism, Mutation, Amino Acyl-tRNA Synthetases chemistry, Escherichia coli enzymology, Escherichia coli Proteins chemistry
- Abstract
Enzymes play important roles in many biological processes. Amino acid residues in the active site pocket of an enzyme, which are in direct contact with the substrate(s), are generally believed to be critical for substrate recognition and catalysis. Identifying and understanding how these "catalytic" residues help enzymes achieve enormous rate enhancement has been the focus of many structural and biochemical studies over the past several decades. Recent studies have shown that enzymes are intrinsically dynamic and dynamic coupling between distant structural elements is essential for effective catalysis in modular enzymes. Therefore, distal residues are expected to have impact on enzyme function. However, few studies have investigated the role of distal residues on enzymatic catalysis. In the present study, the effects of distal residue mutations on the catalytic function of an aminoacyl-tRNA synthetase, namely, prolyl-tRNA synthase, were investigated. The present study demonstrates that distal residues significantly contribute to catalysis of the modular Escherichia coli prolyl-tRNA synthetase by maintaining intrinsic protein flexibility.
- Published
- 2020
- Full Text
- View/download PDF
50. Editing Domain Motions Preorganize the Synthetic Active Site of Prolyl-tRNA Synthetase.
- Author
-
Hu QH, Williams MT, Shulgina I, Fossum CJ, Weeks KM, Adams LM, Reinhardt CR, Musier-Forsyth K, Hati S, and Bhattacharyya S
- Abstract
Prolyl-tRNA synthetases (ProRSs) catalyze the covalent attachment of proline onto cognate tRNAs, an indispensable step for protein synthesis in all living organisms. ProRSs are modular enzymes and the "prokaryotic-like" ProRSs are distinguished from "eukaryotic-like" ProRSs by the presence of an editing domain (INS) inserted between motifs 2 and 3 of the main catalytic domain. Earlier studies suggested the presence of coupled-domain dynamics could contribute to catalysis; however, the role that the distal, highly mobile INS domain plays in catalysis at the synthetic active site is not completely understood. In the present study, a combination of theoretical and experimental approaches has been used to elucidate the precise role of INS domain dynamics. Quantum mechanical/molecular mechanical simulations were carried out to model catalytic Pro-AMP formation by Enterococcus faecalis ProRS. The energetics of the adenylate formation by the wild-type enzyme was computed and contrasted with variants containing active site mutations, as well as a deletion mutant lacking the INS domain. The combined results revealed that two distinct types of dynamics contribute to the enzyme's catalytic power. One set of motions is intrinsic to the INS domain and leads to conformational preorganization that is essential for catalysis. A second type of motion, stemming from the electrostatic reorganization of active site residues, impacts the height and width of the energy profile and has a critical role in fine tuning the substrate orientation to facilitate reactive collisions. Thus, motions in a distal domain can preorganize the active site of an enzyme to optimize catalysis.
- Published
- 2020
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.