1. Microbially induced precipitation of silica by anaerobic methane-oxidizing consortia and implications for microbial fossil preservation.
- Author
-
Osorio-Rodriguez D, Metcalfe KS, McGlynn SE, Yu H, Dekas AE, Ellisman M, Deerinck T, Aristilde L, Grotzinger JP, and Orphan VJ
- Subjects
- Anaerobiosis, Silicon Dioxide, In Situ Hybridization, Fluorescence, Fossils, Archaea genetics, Oxidation-Reduction, Sulfates, Silicates, Phylogeny, Microbial Consortia, Geologic Sediments microbiology, Methane
- Abstract
Authigenic carbonate minerals can preserve biosignatures of microbial anaerobic oxidation of methane (AOM) in the rock record. It is not currently known whether the microorganisms that mediate sulfate-coupled AOM-often occurring as multicelled consortia of anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB)-are preserved as microfossils. Electron microscopy of ANME-SRB consortia in methane seep sediments has shown that these microorganisms can be associated with silicate minerals such as clays [Chen et al ., Sci. Rep. 4 , 1-9 (2014)], but the biogenicity of these phases, their geochemical composition, and their potential preservation in the rock record is poorly constrained. Long-term laboratory AOM enrichment cultures in sediment-free artificial seawater [Yu et al ., Appl. Environ. Microbiol. 88 , e02109-21 (2022)] resulted in precipitation of amorphous silicate particles (~200 nm) within clusters of exopolymer-rich AOM consortia from media undersaturated with respect to silica, suggestive of a microbially mediated process. The use of techniques like correlative fluorescence in situ hybridization (FISH), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS), and nanoscale secondary ion mass spectrometry (nanoSIMS) on AOM consortia from methane seep authigenic carbonates and sediments further revealed that they are enveloped in a silica-rich phase similar to the mineral phase on ANME-SRB consortia in enrichment cultures. Like in cyanobacteria [Moore et al ., Geology 48 , 862-866 (2020)], the Si-rich phases on ANME-SRB consortia identified here may enhance their preservation as microfossils. The morphology of these silica-rich precipitates, consistent with amorphous-type clay-like spheroids formed within organic assemblages, provides an additional mineralogical signature that may assist in the search for structural remnants of microbial consortia in rocks which formed in methane-rich environments from Earth and other planetary bodies., Competing Interests: Competing interests statement:The authors declare no competing interest.
- Published
- 2023
- Full Text
- View/download PDF