1. Superfluid high REynolds von Kármán experiment.
- Author
-
Rousset B, Bonnay P, Diribarne P, Girard A, Poncet JM, Herbert E, Salort J, Baudet C, Castaing B, Chevillard L, Daviaud F, Dubrulle B, Gagne Y, Gibert M, Hébral B, Lehner T, Roche PE, Saint-Michel B, and Bon Mardion M
- Abstract
The Superfluid High REynolds von Kármán experiment facility exploits the capacities of a high cooling power refrigerator (400 W at 1.8 K) for a large dimension von Kármán flow (inner diameter 0.78 m), which can work with gaseous or subcooled liquid (He-I or He-II) from room temperature down to 1.6 K. The flow is produced between two counter-rotating or co-rotating disks. The large size of the experiment allows exploration of ultra high Reynolds numbers based on Taylor microscale and rms velocity [S. B. Pope, Turbulent Flows (Cambridge University Press, 2000)] (Rλ > 10000) or resolution of the dissipative scale for lower Re. This article presents the design and first performance of this apparatus. Measurements carried out in the first runs of the facility address the global flow behavior: calorimetric measurement of the dissipation, torque and velocity measurements on the two turbines. Moreover first local measurements (micro-Pitot, hot wire,…) have been installed and are presented.
- Published
- 2014
- Full Text
- View/download PDF