1. Influences of released humic acids during thermal hydrolysis on sludge anaerobic digestion: New insights from the molecular weight of humic acids.
- Author
-
Sun Y, Liu H, Wen J, Xiao H, Shi M, Lu X, Shen K, Zhang X, Fu B, Cui M, Li Y, Tabassum S, and Liu H
- Subjects
- Anaerobiosis, Hydrolysis, Waste Disposal, Fluid methods, Humic Substances, Sewage, Methane metabolism, Molecular Weight
- Abstract
Humic acids (HAs) would be excessively released during thermal hydrolysis pretreatment (THP) and deeply disturb anaerobic digestion (AD) of waste activated sludge (WAS). The molecular weights of HAs could affect HAs entering microbial cells, binding with digestive enzymes and participating in electron transfer, thereby determining its influences on sludge AD. Results in this study confirmed the different influences of HAs from diverse sources on sludge AD indeed had significant correlations with their molecular weights. The presence of commercial HAs (SAHA) inhibited methane production by 53.3% at 0.5 g/L while HAs extracted from raw sludge (WNHA) increased methane production by 20.5% at the same concentration, which attribute to the comprehensive impacts from their differences in functional group compositions and molecular weights. Moreover, comparing to WNHA, the HAs extracted from thermally hydrolyzed sludge (THHA) showed unchanged functional group compositions but reduced methane generation facilitation to 5.1%, which only be due to its decreased molecular weights. In-depth research indicated that HAs influences on enzymes were closely relative to its molecular weight. HAs with greater molecular weights presented more significant inhibition to extracellular enzymes while micromolecular HAs affected intracellular enzymes more. Furthermore, macromolecular HAs promoted sludge solubilization and acidification but hindered hydrolysis and methanogenesis, whereas micromolecular HAs promoted acidification but inhibited methanogenesis. This study underscored the importance of changes in molecular weight of HAs during sludge THP, offering insights into previous discrepancies in reports on HAs effects on sludge AD., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Published
- 2024
- Full Text
- View/download PDF