1. Breaking constraint of mammalian axial formulae.
- Author
-
Hauswirth GM, Garside VC, Wong LSF, Bildsoe H, Manent J, Chang YC, Nefzger CM, Firas J, Chen J, Rossello FJ, Polo JM, and McGlinn E
- Subjects
- Animals, Biological Evolution, Body Patterning genetics, Bone Morphogenetic Proteins genetics, Genes, Homeobox, Growth Differentiation Factors genetics, Homeodomain Proteins, Mammals, Mice, MicroRNAs genetics, Tail metabolism, Transcriptome, Body Patterning physiology, Bone Morphogenetic Proteins metabolism, Growth Differentiation Factors metabolism, MicroRNAs metabolism, Spine metabolism, Tretinoin metabolism
- Abstract
The vertebral column of individual mammalian species often exhibits remarkable robustness in the number and identity of vertebral elements that form (known as axial formulae). The genetic mechanism(s) underlying this constraint however remain ill-defined. Here, we reveal the interplay of three regulatory pathways (Gdf11, miR-196 and Retinoic acid) is essential in constraining total vertebral number and regional axial identity in the mouse, from cervical through to tail vertebrae. All three pathways have differing control over Hox cluster expression, with heterochronic and quantitative changes found to parallel changes in axial identity. However, our work reveals an additional role for Hox genes in supporting axial elongation within the tail region, providing important support for an emerging view that mammalian Hox function is not limited to imparting positional identity as the mammalian body plan is laid down. More broadly, this work provides a molecular framework to interrogate mechanisms of evolutionary change and congenital anomalies of the vertebral column., (© 2022. The Author(s).)
- Published
- 2022
- Full Text
- View/download PDF