1. Anisotropic emission from multilayered plasmon resonator nanocomposites of isotropic semiconductor quantum dots.
- Author
-
Ozel T, Nizamoglu S, Sefunc MA, Samarskaya O, Ozel IO, Mutlugun E, Lesnyak V, Gaponik N, Eychmuller A, Gaponenko SV, and Demir HV
- Subjects
- Absorption, Anisotropy, Electricity, Kinetics, Luminescent Measurements, Nanocomposites chemistry, Quantum Dots, Semiconductors
- Abstract
We propose and demonstrate a nanocomposite localized surface plasmon resonator embedded into an artificial three-dimensional construction. Colloidal semiconductor quantum dots are assembled between layers of metal nanoparticles to create a highly strong plasmon-exciton interaction in the plasmonic cavity. In such a multilayered plasmonic resonator architecture of isotropic CdTe quantum dots, we observed polarized light emission of 80% in the vertical polarization with an enhancement factor of 4.4, resulting in a steady-state anisotropy value of 0.26 and reaching the highest quantum efficiency level of 30% ever reported for such CdTe quantum dot solids. Our electromagnetic simulation results are in good agreement with the experimental characterization data showing a significant emission enhancement in the vertical polarization, for which their fluorescence decay lifetimes are substantially shortened by consecutive replication of our unit cell architecture design. Such strongly plasmon-exciton coupling nanocomposites hold great promise for future exploitation and development of quantum dot plasmonic biophotonics and quantum dot plasmonic optoelectronics.
- Published
- 2011
- Full Text
- View/download PDF