1. Reverse vaccinology & immunoinformatics approach to design a multiepitope vaccine (CV3Ag-antiMRSA) against methicillin resistant Staphylococcus aureus (MRSA) - a pathogen affecting both human and animal health.
- Author
-
Das Mitra S, Kumar B, Rajegowda S, Bandopadhyay S, Karunakar P, and Pais R
- Subjects
- Humans, Animals, Staphylococcal Vaccines immunology, Epitopes immunology, Epitopes chemistry, Computational Biology methods, Molecular Docking Simulation, Staphylococcal Infections prevention & control, Staphylococcal Infections immunology, Staphylococcal Infections microbiology, Molecular Dynamics Simulation, Immunoinformatics, Methicillin-Resistant Staphylococcus aureus immunology, Methicillin-Resistant Staphylococcus aureus drug effects, Methicillin-Resistant Staphylococcus aureus pathogenicity, Vaccinology methods
- Abstract
Infections caused by drug resistant bacteria is a silent detrimental pandemic affecting the global health care profoundly. Methicillin resistant Staphylococcus aureus (MRSA) is a pathogen that causes serious infections in different settings (community, hospital & veterinary) whose treatment remains highly challenging due to its powerful characteristics (antibiotic resistance strategies, virulence factors). In this study, we used reverse vaccinology (RV) approach and designed an immunogenic multi epitope vaccine (CV3Ag-antiMRSA) targeting three potential antigen candidates viz., mecA encoding transpeptidase (PBP2a) protein responsible for conferring methicillin resistance and two virulence determinants - hlgA encoding gamma-hemolysin component A (a pore forming toxin) and isdB encoding iron regulated surface determinant B (heme transport component that allows S. aureus to scavenge iron from host hemoglobin and myoglobin). We employed an array of immunoinformatic tools/server to identify and use immunogenic epitopes (B cell and MHC class) to develop the chimeric subunit vaccine V4 (CV3Ag-antiMRSA) with immune modulating adjuvant and linkers. Based on different parameters, the vaccine construct V4 (CV3Ag-antiMRSA) was determined to be suitable vaccine (antigenic and non-allergen). Molecular docking and simulation of CV3Ag-antiMRSA with Toll Like Receptor (TLR2) predicted its immuno-stimulating potential. Finally, in silico cloning of CV3Ag-antiMRSA construct into pet28a and pet30 vector displayed its feasibility for the heterologous expression in the E. coli expression system. This vaccine candidate (CV3Ag-antiMRSA) designed based on the MRSA genomes obtained from both animal and human hosts can be experimentally validated and thereby contribute to vaccine development to impart protection to both animal and human health.Communicated by Ramaswamy H. Sarma.
- Published
- 2024
- Full Text
- View/download PDF