1. Remediation of polycyclic aromatic hydrocarbons by sulfate radical advanced oxidation: Evaluation of efficiency and ecological impact.
- Author
-
Xu Y, Che T, Li Y, Fang C, Dai Z, Li H, Xu L, and Hu F
- Subjects
- Biodegradation, Environmental, Soil, Soil Microbiology, Sulfates, Polycyclic Aromatic Hydrocarbons analysis, Soil Pollutants analysis
- Abstract
Remediation of polycyclic aromatic hydrocarbon (PAH) contamination in soil remains expensive and difficult. Sulfate radical advanced oxidation processes (SR-AOPs) can be used for in situ PAH oxidation but their efficiency and ecological impacts require evaluation. Here, we tested the remediation efficiency and ecological impacts of an SR-AOP combining sodium persulfate and ferrous sulfate (FS), the FS SR-AOP with the chelating agent citric acid (FS+CA), and the FS SR-AOP with chelating agent and the surfactant IGEPALCA-720 (FS+CA+IG) compared with natural attenuation (control, CK). We measured PAH, soil physicochemical properties (pH, soil organic matter [SOM]), and soil biological properties (polyphenol oxidase [PPO] activity, peroxidase [POD] activity, soil microbes) in contaminated soil samples after incubation with FS, FS+CA, FA+CA+IG, or CK for 1, 15, and 30 d. Compared with CK, all SR-AOPs significantly decreased PAH after 1 d, with FS+CA+IG showing the highest efficiency (80.8%) and PAH removal peaking at 15 d. FS+CA+IG treatment reduced SOM the least and soil pH the most; after 30 d, SOM recovered to ~80% of the level observed in CK, but soil pH decreased further. PPO and POD activities were highest after 15 and 30 d of FS+CA+IG treatment. Real-time quantitative PCR demonstrated that SR-AOPs significantly decreased quantities of PAH-degrading bacteria, soil bacteria, fungi, and actinobacteria at 1 d, but after 30 d, the microbes recovered to levels similar to those observed in CK, with no significant differences among SR-AOPs. SR-AOPs reduced bacterial diversity and changed the dominant phylum from Acidobacteria to Firmicutes. In summary, SR-AOP treatment with both the chelating agent and the surfactant produced the best PAH removal and least SOM destruction but the largest pH decrease, although some factors recovered with longer incubation. This study provides key information for improving PAH remediation and evaluating its ecological impact., (Copyright © 2021 The Authors. Published by Elsevier Inc. All rights reserved.)
- Published
- 2021
- Full Text
- View/download PDF