1. Cyclophostin and Cyclipostins analogues counteract macrolide-induced resistance mediated by erm(41) in Mycobacterium abscessus.
- Author
-
Sarrazin M, Poncin I, Fourquet P, Audebert S, Camoin L, Denis Y, Santucci P, Spilling CD, Kremer L, Le Moigne V, Herrmann JL, Cavalier JF, and Canaan S
- Subjects
- Drug Resistance, Bacterial drug effects, Azithromycin pharmacology, Clarithromycin pharmacology, Humans, Bacterial Proteins metabolism, Bacterial Proteins genetics, Mycobacterium Infections, Nontuberculous drug therapy, Mycobacterium Infections, Nontuberculous microbiology, Methyltransferases metabolism, Methyltransferases genetics, Microbial Sensitivity Tests, Mycobacterium abscessus drug effects, Macrolides pharmacology, Anti-Bacterial Agents pharmacology
- Abstract
Background: Mycobacterium abscessus is an emerging pathogen causing severe pulmonary infections, particularly in individuals with underlying conditions, such as cystic fibrosis or chronic obstructive pulmonary disease. Macrolides, such as clarithromycin (CLR) or azithromycin (AZM), represent the cornerstone of antibiotherapy against the M. abscessus species. However, prolonged exposure to these macrolides can induce of Erm(41)-mediated resistance, limiting their spectrum of activity and leading to therapeutic failure. Therefore, inhibiting Erm(41) could thwart this resistance mechanism to maintain macrolide susceptibility, thus increasing the rate of treatment success. In our previous study, the Erm(41) methyltransferase was identified as a possible target enzyme of Cyclipostins and Cyclophostin compounds (CyC)., Methods: Herein, we exploited this feature to evaluate the in vitro activity of CLR and AZM in combination with different CyC via the checkerboard assay on macrolide-susceptible and induced macrolide-resistant M. abscessus strains selected in vitro following exposure CLR and AZM., Results: Our results emphasize the use of the CyC to prevent/overcome Erm(41)‑induced resistance and to restore macrolide susceptibility., Conclusion: This work should expand our therapeutic arsenal in the fight against a antibioticresistant mycobacterial species and could provide the opportunity to revisit the therapeutic regimen for combating M. abscessus pulmonary infections in patients, and particularly in erm(41)-positive strains., Competing Interests: Declarations. Ethics approval and consent to participate: Not applicable. Consent for publication and references: Not applicable. Competing interests: The authors declare that they have no competing interests. Not applicable., (© 2024. The Author(s).)
- Published
- 2024
- Full Text
- View/download PDF