1. Effect of crystallite size reduction and widening of optical phonon vibration due to AC variation on ZnO/Mg composites in implementation of methylene blue degradation.
- Author
-
Putri RA, Tahir D, and Heryanto
- Abstract
The fashion industry's reliance on dyes contributes significantly to environmental pollution, which disturbs the ecological balance. To address this issue, we used ZnO/Mg combined with activated carbon (AC) at various concentrations (0.1 g, 0.5 g, and 1 g), which were synthesized via sol-gel and mechanical alloying processes. The analysis of X-ray diffraction shows reduced crystallite size, with d-spacing change ( → d ← ) for ZnO/Mg/AC (0.5 g) and ( ← d → ) for ZnO/Mg/AC (1 g), respectively. The results of the IR spectrum indicated the main vibrations is MgO and Zn-O bonds at wave numbers 673 cm
-1 and 467 cm-1 . It was found that ZnO/Mg/AC (1 g) shows high degradation performance D % : 86.15% as a consequence of reduced crystallite size: 22.67 nm, decreased skin depth: 0.002 cm, widening of optical phonon vibration ( Δ ( LO - TO ) ): 252 cm-1 and increased E g : 4.6 eV as a function AC variation. Moreover, the finding of high photocatalytic performance ≥ 80% for 0.25 mL MB dissolved in 250 mL distilled water is obtained from all composites. Based on these results, ZnO/Mg/AC shows potential as a photocatalyst to solve the MB waste problem., (© 2024. The Author(s), under exclusive licence to the European Photochemistry Association, European Society for Photobiology.)- Published
- 2024
- Full Text
- View/download PDF