1. Preclinical evaluation and pilot clinical study of [ 68 Ga]Ga-NOTA-H006 for non-invasive PET imaging of 5T4 oncofetal antigen.
- Author
-
He Y, Tian R, Xu D, Wu Y, Rina S, Chen T, Guan Y, Xie T, Ying T, Xie F, and Han J
- Abstract
Purpose: Trophoblast glycoprotein, the so-called 5T4, is an oncofetal antigen expressed in many different cancers. However, no 5T4-specific radioligand is employed in the clinic for non-invasive diagnosis. Thus, the aim of the current study was to develop a PET radiotracer for imaging 5T4 expression in preclinical and clinical stages., Methods: A VHH library was constructed by camel immunization. The specificity of the VHHs toward 5T4 antigen was screened through phage display biopanning and periplasmic extract enzyme-linked immunosorbent assay. 1,4,7-Triazacyclononane-1,4,7-triacetate acid (NOTA) derivative was conjugated to the selected VHH. After radiolabeling, microPET/CT and ex vivo biodistribution were conducted using BxPC-3 and MDA-MB-468 tumor-bearing mice. Cold VHH was co-injected with the tracer to challenge its binding in vivo. For the pilot clinical study, PET/CT images were acquired at 1 h after injection of tracer in patients with pathologically confirmed primary and metastatic tumors., Results: A library with a capacity of 1.2 × 10
12 colony-forming units was constructed after successful camel immunization. Nb1-40 with a median effect concentration of 0.43 nM was selected. After humanization, the resulting H006 maintained a high affinity towards 5T4. [68 Ga]Ga-NOTA-H006 with the molar activities of 6.48-54.2 GBq/µmol was prepared with high radiochemical purity (> 98%). Using [68 Ga]Ga-NOTA-H006, microPET/CT revealed a clear visualization of 5T4 expression in BxPC-3 tumor-bearing mice. Ex vivo biodistribution showed that the highest tumor-to-blood ratio (∼ 3-fold) and tumor-to-muscle ratio (∼ 5-fold) were achieved at 60 min post-injection. Co-injection of the cold H006 at a dose of 1.5 mg/kg significantly reduced the tumor uptake (p < 0.0001). In the pilot clinical study, [68 Ga]Ga-NOTA-H006 demonstrated its capacity to map 5T4-positive lesions in humans and yielded a mean effective dose of 3.4 × 10- 2 mSv/MBq., Conclusions: [68 Ga]Ga-NOTA-H006, which can visualize 5T4 expression in vivo, has been successfully developed. This opens up opportunities for non-invasively studying 5T4 expression through nuclear medicine. Further clinical investigations are warranted to explore its clinical value in disease progression and companion diagnosis., (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)- Published
- 2024
- Full Text
- View/download PDF