1. Non-monotonic concentration dependence of the electro-phoretic mobility of charged spheres in realistic salt free suspensions.
- Author
-
Botin D, Carrique F, Ruiz-Reina E, and Palberg T
- Abstract
Using super-heterodyne Doppler velocimetry with multiple scattering correction, we extend the optically accessible range of concentrations in experiments on colloidal electro-kinetics. Here, we measured the electro-phoretic mobility and the DC conductivity of aqueous charged sphere suspensions covering about three orders of magnitude in particle concentrations and transmissions as low as 40%. The extended concentration range for the first time allows the demonstration of a non-monotonic concentration dependence of the mobility for a single particle species. Our observations reconcile previous experimental observations made on other species over restricted concentration ranges. We compare our results to the state-of-the-art theoretical calculations using a constant particle charge and the carefully determined experimental boundary conditions as input. In particular, we consider the so-called realistic salt free conditions, i.e., we respect the release of counterions by the particles, the solvent hydrolysis, and the formation of carbonic acid from dissolved neutral CO
2 . We also compare our results to previous results obtained under similarly well-defined conditions. This allows identification of three distinct regions of differing density dependence. There is an ascent during the build-up of double layer overlap, which is not expected by theory, an extended plateau region in quantitative agreement with theoretical expectation based on a constant effective charge and a sudden decrease, which occurs way before the expected gradual decrease. Our observations suggest a relation of the non-monotonic behavior to a decrease in particle charge, and we tentatively discuss possibly underlying mechanisms.- Published
- 2020
- Full Text
- View/download PDF