1. Effect of Polymer Host on Aggregation-Induced Enhanced Emission of Fluorescent Optical Brighteners.
- Author
-
Schyns ZOG, Bennett TM, Davison GE, and Shaver MP
- Abstract
Fluorophores displaying concentration-dependent luminescence are becoming increasingly valuable in stress-sensing, tagging, and dyeing applications, including the quantification of recycled content in plastic packaging. In this work, we investigate the effects of the polymer matrix, dye structure, and crystallinity on aggregation-induced enhanced emission (AIEE). We demonstrate that the aggregation threshold required for successful quantification can be adjusted through modulation of guest-host (dye-polymer) interactions and monitored using an array of fluorescence characterization. Modification of guest-host interactions is realized through choice of host, change of guest, and tuning of the crystallinity of the host system. Increasing the number of guest-host interactions and solubility between guest and host, loosely predicted through the calculation of the solubility parameter, increases the aggregation threshold relative to other low-polarity and low-interacting systems. We demonstrate that issues, such as loading level and cost, associated with high aggregation thresholds, can be circumvented by increasing system crystallinity, improving spectral intensities, and subsequent quantification. These insights explore the fundamental understanding of supramolecular interactions that govern dye-polymer systems., Competing Interests: The authors declare the following competing financial interest(s): Zoe Schyns and Michael Shaver established a not-for-profit spin-out exploring the use of AIEE to improve plastics recycling., (© 2024 The Authors. Published by American Chemical Society.)
- Published
- 2024
- Full Text
- View/download PDF