1. Elucidating the efficacy of functionalized multi-walled carbon nanotube in the biogenesis of L-Dopa and antioxidant metabolites in cell cultures of Hybanthus enneaspermus.
- Author
-
Parthasarathy SP, Anusuya S, Rajalakshmi S, Megha D, Appunu C, Alagumanian S, and Manickavasagam M
- Subjects
- Antioxidants metabolism, Levodopa, Hydrogen Peroxide metabolism, Nanotubes, Carbon, Violaceae chemistry, Violaceae metabolism
- Abstract
Hybanthus enneaspermus (L.)F.Muell. is a highly indispensable medicinal herb yielding L-Dopa, deemed the gold standard drug among the therapeutic options for Parkinson's disease. This investigation is the first attempt to evaluate the eliciting influence of carboxylic acid functionalized multi-walled carbon nanotube (MWCNT-COOH) on the biosynthesis of L-Dopa and on biomass aggregation and antioxidant metabolites in H. enneaspermus cell suspension cultures. Suspension cells were accomplished from friable calli generated from the nodal segments of H. enneaspermus in Murashige and Skoog (MS) liquid medium infused with 2 mg L
-1 2, 4-Dichlorophenoxyacetic acid (2, 4-D), and 0.3 mg L-1 meta-Topolin (mT). The influence of MWCNTs on L-Dopa synthesis, biomass accumulation, and biochemical parameters was examined on the basis of the exposure time and in a concentration-dependent manner of MWCNTs. The inclusion of 30 mg L-1 MWCNTs increased the biomass and the L-Dopa level by 2.00 and 16.37-folds, respectively, compared with that of the control. Furthermore, the effect of MWCNTs on physiological parameters such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPX), ascorbate peroxidase (APX), hydrogen peroxide (H2 O2 ), malondialdehyde (MDA) content, 2-diphenylpicrylhydrazyl (DPPH), and ferric-reducing ability of plasma (FRAP) was examined over the elicited cells. Among the antioxidant enzymatic activities, CAT enhanced 8.0 fold compared with that of the control. MDA and DPPH content enhanced 2.60 and 1.12 folds, respectively, compared with that of the control. The current study showed that MWCNTs offer new possibilities for their usage over in vitro by acting as potential innovative plant metabolite elicitors and stress-protecting entities., Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper., (Copyright © 2023 Elsevier Masson SAS. All rights reserved.)- Published
- 2024
- Full Text
- View/download PDF