15 results on '"Andrews-Hanna, Jeffrey C."'
Search Results
2. Remote detection of a lunar granitic batholith at Compton-Belkovich.
- Author
-
Siegler MA, Feng J, Lehman-Franco K, Andrews-Hanna JC, Economos RC, Clair MS, Million C, Head JW, Glotch TD, and White MN
- Abstract
Granites are nearly absent in the Solar System outside of Earth. Achieving granitic compositions in magmatic systems requires multi-stage melting and fractionation, which also increases the concentration of radiogenic elements
1 . Abundant water and plate tectonics facilitate these processes on Earth, aiding in remelting. Although these drivers are absent on the Moon, small granite samples have been found, but details of their origin and the scale of systems they represent are unknown2 . Here we report microwave-wavelength measurements of an anomalously hot geothermal source that is best explained by the presence of an approximately 50-kilometre-diameter granitic system below the thorium-rich farside feature known as Compton-Belkovich. Passive microwave radiometry is sensitive to the integrated thermal gradient to several wavelengths depth. The 3-37-gigahertz antenna temperatures of the Chang'e-1 and Chang'e-2 microwave instruments allow us to measure a peak heat flux of about 180 milliwatts per square metre, which is about 20 times higher than that of the average lunar highlands3,4 . The surprising magnitude and geographic extent of this feature imply an Earth-like, evolved granitic system larger than believed possible on the Moon, especially outside of the Procellarum region5 . Furthermore, these methods are generalizable: similar uses of passive radiometric data could vastly expand our knowledge of geothermal processes on the Moon and other planetary bodies., (© 2023. The Author(s), under exclusive licence to Springer Nature Limited.)- Published
- 2023
- Full Text
- View/download PDF
3. A South Pole-Aitken impact origin of the lunar compositional asymmetry.
- Author
-
Jones MJ, Evans AJ, Johnson BC, Weller MB, Andrews-Hanna JC, Tikoo SM, and Keane JT
- Abstract
The formation of the largest and most ancient lunar impact basin, South Pole-Aitken (SPA), was a defining event in the Moon's evolution. Using numerical simulations, we show that widespread mantle heating from the SPA impact can catalyze the formation of the long-lived nearside-farside lunar asymmetry in incompatible elements and surface volcanic deposits, which has remained unexplained since its discovery in the Apollo era. The impact-induced heat drives hemisphere-scale mantle convection, which would sequester Th- and Ti-rich lunar magma ocean cumulates in the nearside hemisphere within a few hundred million years if they remain immediately beneath the lunar crust at the time of the SPA impact. A warm initial upper mantle facilitates generation of a pronounced compositional asymmetry consistent with the observed lunar asymmetry.
- Published
- 2022
- Full Text
- View/download PDF
4. Ring faults and ring dikes around the Orientale basin on the Moon.
- Author
-
Andrews-Hanna JC, Head JW, Johnson B, Keane JT, Kiefer WS, McGovern PJ, Neumann GA, Wieczorek MA, and Zuber MT
- Abstract
The Orientale basin is the youngest and best-preserved multiring impact basin on the Moon, having experienced only modest modification by subsequent impacts and volcanism. Orientale is often treated as the type example of a multiring basin, with three prominent rings outside of the inner depression: the Inner Rook Montes, the Outer Rook Montes, and the Cordillera. Here we use gravity data from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission to reveal the subsurface structure of Orientale and its ring system. Gradients of the gravity data reveal a continuous ring dike intruded into the Outer Rook along the plane of the fault associated with the ring scarp. The volume of this ring dike is ~18 times greater than the volume of all extrusive mare deposits associated with the basin. The gravity gradient signature of the Cordillera ring indicates an offset along the fault across a shallow density interface, interpreted to be the base of the low-density ejecta blanket. Both gravity gradients and crustal thickness models indicate that the edge of the central cavity is shifted inward relative to the equivalent Inner Rook ring at the surface. Models of the deep basin structure show inflections along the crust-mantle interface at both the Outer Rook and Cordillera rings, indicating that the basin ring faults extend from the surface to at least the base of the crust. Fault dips range from 13-22° for the Cordillera fault in the northeastern quadrant, to 90° for the Outer Rook in the northwestern quadrant. The fault dips for both outer rings are lowest in the northeast, possibly due to the effects of either the direction of projectile motion or regional gradients in pre-impact crustal thickness. Similar ring dikes and ring faults are observed around the majority of lunar basins.
- Published
- 2018
- Full Text
- View/download PDF
5. The anatomy of a wrinkle ridge revealed in the wall of Melas Chasma, Mars.
- Author
-
Cole HM and Andrews-Hanna JC
- Abstract
Wrinkle ridges are among the most common tectonic structures on the terrestrial planets, and provide important records of the history of planetary strain and geodynamics. The observed broad arches and superposed narrow wrinkles are thought to be the surface manifestation of blind thrust faults, which terminate in near-surface volcanic sequences and cause folding and layer-parallel shear. However, the subsurface tectonic architecture associated with the ridges remains a matter of debate. Here we present direct observations of a wrinkle ridge thrust fault where it has been exposed by erosion in the southern wall of Melas Chasma on Mars. The thrust fault has been made resistant to erosion, likely due to volcanic intrusion, such that later erosional widening of the trough exposed the fault plane as a 70 km-long ridge extending into the chasma. A plane fit to this ridge crest reveals a thrust fault with a dip of 13° (+8°, -7°) between 1 and 3.5 km depth below the plateau surface, with no evidence for listric character in this depth range. This dip is significantly lower than the commonly assumed value of 30°, which, if representative of other wrinkle ridges, indicates that global contraction on Mars may have been previously underestimated.
- Published
- 2017
- Full Text
- View/download PDF
6. Formation of the Orientale lunar multiring basin.
- Author
-
Johnson BC, Blair DM, Collins GS, Melosh HJ, Freed AM, Taylor GJ, Head JW, Wieczorek MA, Andrews-Hanna JC, Nimmo F, Keane JT, Miljković K, Soderblom JM, and Zuber MT
- Abstract
Multiring basins, large impact craters characterized by multiple concentric topographic rings, dominate the stratigraphy, tectonics, and crustal structure of the Moon. Using a hydrocode, we simulated the formation of the Orientale multiring basin, producing a subsurface structure consistent with high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft. The simulated impact produced a transient crater, ~390 kilometers in diameter, that was not maintained because of subsequent gravitational collapse. Our simulations indicate that the flow of warm weak material at depth was crucial to the formation of the basin's outer rings, which are large normal faults that formed at different times during the collapse stage. The key parameters controlling ring location and spacing are impactor diameter and lunar thermal gradients., (Copyright © 2016, American Association for the Advancement of Science.)
- Published
- 2016
- Full Text
- View/download PDF
7. Gravity field of the Orientale basin from the Gravity Recovery and Interior Laboratory Mission.
- Author
-
Zuber MT, Smith DE, Neumann GA, Goossens S, Andrews-Hanna JC, Head JW, Kiefer WS, Asmar SW, Konopliv AS, Lemoine FG, Matsuyama I, Melosh HJ, McGovern PJ, Nimmo F, Phillips RJ, Solomon SC, Taylor GJ, Watkins MM, Wieczorek MA, Williams JG, Jansen JC, Johnson BC, Keane JT, Mazarico E, Miljković K, Park RS, Soderblom JM, and Yuan DN
- Abstract
The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 ± 0.2) × 10
6 km3 of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale's three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins., (Copyright © 2016, American Association for the Advancement of Science.)- Published
- 2016
- Full Text
- View/download PDF
8. Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements.
- Author
-
Neumann GA, Zuber MT, Wieczorek MA, Head JW, Baker DM, Solomon SC, Smith DE, Lemoine FG, Mazarico E, Sabaka TJ, Goossens SJ, Melosh HJ, Phillips RJ, Asmar SW, Konopliv AS, Williams JG, Sori MM, Soderblom JM, Miljković K, Andrews-Hanna JC, Nimmo F, and Kiefer WS
- Abstract
Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, from complex craters to peak-ring basins. At crater diameters larger than ~200 km, a central positive Bouguer anomaly is seen within the innermost peak ring, and an annular negative Bouguer anomaly extends outward from this ring to the outer topographic rim crest. These observations demonstrate that basin-forming impacts remove crustal materials from within the peak ring and thicken the crust between the peak ring and the outer rim crest. A correlation between the diameter of the central Bouguer gravity high and the outer topographic ring diameter for well-preserved basins enables the identification and characterization of basins for which topographic signatures have been obscured by superposed cratering and volcanism. The GRAIL inventory of lunar basins improves upon earlier lists that differed in their totals by more than a factor of 2. The size-frequency distributions of basins on the nearside and farside hemispheres of the Moon differ substantially; the nearside hosts more basins larger than 350 km in diameter, whereas the farside has more smaller basins. Hemispherical differences in target properties, including temperature and porosity, are likely to have contributed to these different distributions. Better understanding of the factors that control basin size will help to constrain models of the original impactor population.
- Published
- 2015
- Full Text
- View/download PDF
9. Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data.
- Author
-
Andrews-Hanna JC, Besserer J, Head JW 3rd, Howett CJ, Kiefer WS, Lucey PJ, McGovern PJ, Melosh HJ, Neumann GA, Phillips RJ, Schenk PM, Smith DE, Solomon SC, and Zuber MT
- Abstract
The Procellarum region is a broad area on the nearside of the Moon that is characterized by low elevations, thin crust, and high surface concentrations of the heat-producing elements uranium, thorium, and potassium. The region has been interpreted as an ancient impact basin approximately 3,200 kilometres in diameter, although supporting evidence at the surface would have been largely obscured as a result of the great antiquity and poor preservation of any diagnostic features. Here we use data from the Gravity Recovery and Interior Laboratory (GRAIL) mission to examine the subsurface structure of Procellarum. The Bouguer gravity anomalies and gravity gradients reveal a pattern of narrow linear anomalies that border Procellarum and are interpreted to be the frozen remnants of lava-filled rifts and the underlying feeder dykes that served as the magma plumbing system for much of the nearside mare volcanism. The discontinuous surface structures that were earlier interpreted as remnants of an impact basin rim are shown in GRAIL data to be a part of this continuous set of border structures in a quasi-rectangular pattern with angular intersections, contrary to the expected circular or elliptical shape of an impact basin. The spatial pattern of magmatic-tectonic structures bounding Procellarum is consistent with their formation in response to thermal stresses produced by the differential cooling of the province relative to its surroundings, coupled with magmatic activity driven by the greater-than-average heat flux in the region.
- Published
- 2014
- Full Text
- View/download PDF
10. The origin of lunar mascon basins.
- Author
-
Melosh HJ, Freed AM, Johnson BC, Blair DM, Andrews-Hanna JC, Neumann GA, Phillips RJ, Smith DE, Solomon SC, Wieczorek MA, and Zuber MT
- Abstract
High-resolution gravity data from the Gravity Recovery and Interior Laboratory spacecraft have clarified the origin of lunar mass concentrations (mascons). Free-air gravity anomalies over lunar impact basins display bull's-eye patterns consisting of a central positive (mascon) anomaly, a surrounding negative collar, and a positive outer annulus. We show that this pattern results from impact basin excavation and collapse followed by isostatic adjustment and cooling and contraction of a voluminous melt pool. We used a hydrocode to simulate the impact and a self-consistent finite-element model to simulate the subsequent viscoelastic relaxation and cooling. The primary parameters controlling the modeled gravity signatures of mascon basins are the impactor energy, the lunar thermal gradient at the time of impact, the crustal thickness, and the extent of volcanic fill.
- Published
- 2013
- Full Text
- View/download PDF
11. The crust of the Moon as seen by GRAIL.
- Author
-
Wieczorek MA, Neumann GA, Nimmo F, Kiefer WS, Taylor GJ, Melosh HJ, Phillips RJ, Solomon SC, Andrews-Hanna JC, Asmar SW, Konopliv AS, Lemoine FG, Smith DE, Watkins MM, Williams JG, and Zuber MT
- Abstract
High-resolution gravity data obtained from the dual Gravity Recovery and Interior Laboratory (GRAIL) spacecraft show that the bulk density of the Moon's highlands crust is 2550 kilograms per cubic meter, substantially lower than generally assumed. When combined with remote sensing and sample data, this density implies an average crustal porosity of 12% to depths of at least a few kilometers. Lateral variations in crustal porosity correlate with the largest impact basins, whereas lateral variations in crustal density correlate with crustal composition. The low-bulk crustal density allows construction of a global crustal thickness model that satisfies the Apollo seismic constraints, and with an average crustal thickness between 34 and 43 kilometers, the bulk refractory element composition of the Moon is not required to be enriched with respect to that of Earth.
- Published
- 2013
- Full Text
- View/download PDF
12. Ancient igneous intrusions and early expansion of the Moon revealed by GRAIL gravity gradiometry.
- Author
-
Andrews-Hanna JC, Asmar SW, Head JW 3rd, Kiefer WS, Konopliv AS, Lemoine FG, Matsuyama I, Mazarico E, McGovern PJ, Melosh HJ, Neumann GA, Nimmo F, Phillips RJ, Smith DE, Solomon SC, Taylor GJ, Wieczorek MA, Williams JG, and Zuber MT
- Abstract
The earliest history of the Moon is poorly preserved in the surface geologic record due to the high flux of impactors, but aspects of that history may be preserved in subsurface structures. Application of gravity gradiometry to observations by the Gravity Recovery and Interior Laboratory (GRAIL) mission results in the identification of a population of linear gravity anomalies with lengths of hundreds of kilometers. Inversion of the gravity anomalies indicates elongated positive-density anomalies that are interpreted to be ancient vertical tabular intrusions or dikes formed by magmatism in combination with extension of the lithosphere. Crosscutting relationships support a pre-Nectarian to Nectarian age, preceding the end of the heavy bombardment of the Moon. The distribution, orientation, and dimensions of the intrusions indicate a globally isotropic extensional stress state arising from an increase in the Moon's radius by 0.6 to 4.9 kilometers early in lunar history, consistent with predictions of thermal models.
- Published
- 2013
- Full Text
- View/download PDF
13. The Borealis basin and the origin of the martian crustal dichotomy.
- Author
-
Andrews-Hanna JC, Zuber MT, and Banerdt WB
- Abstract
The most prominent feature on the surface of Mars is the near-hemispheric dichotomy between the southern highlands and northern lowlands. The root of this dichotomy is a change in crustal thickness along an apparently irregular boundary, which can be traced around the planet, except where it is presumably buried beneath the Tharsis volcanic rise. The isostatic compensation of these distinct provinces and the ancient population of impact craters buried beneath the young lowlands surface suggest that the dichotomy is one of the most ancient features on the planet. However, the origin of this dichotomy has remained uncertain, with little evidence to distinguish between the suggested causes: a giant impact or mantle convection/overturn. Here we use the gravity and topography of Mars to constrain the location of the dichotomy boundary beneath Tharsis, taking advantage of the different modes of compensation for Tharsis and the dichotomy to separate their effects. We find that the dichotomy boundary along its entire path around the planet is accurately fitted by an ellipse measuring approximately 10,600 by 8,500 km, centred at 67 degrees N, 208 degrees E. We suggest that the elliptical nature of the crustal dichotomy is most simply explained by a giant impact, representing the largest such structure thus far identified in the Solar System.
- Published
- 2008
- Full Text
- View/download PDF
14. Density of Mars' south polar layered deposits.
- Author
-
Zuber MT, Phillips RJ, Andrews-Hanna JC, Asmar SW, Konopliv AS, Lemoine FG, Plaut JJ, Smith DE, and Smrekar SE
- Subjects
- Extraterrestrial Environment, Ice, Mars
- Abstract
Both poles of Mars are hidden beneath caps of layered ice. We calculated the density of the south polar layered deposits by combining the gravity field obtained from initial results of radio tracking of the Mars Reconnaissance Orbiter with existing surface topography from the Mars Orbiter Laser Altimeter on the Mars Global Surveyor spacecraft and basal topography from the Mars Advanced Radar for Subsurface and Ionospheric Sounding on the Mars Express spacecraft. The results indicate a best-fit density of 1220 kilograms per cubic meter, which is consistent with water ice that has approximately 15% admixed dust. The results demonstrate that the deposits are probably composed of relatively clean water ice and also refine the martian surface-water inventory.
- Published
- 2007
- Full Text
- View/download PDF
15. Meridiani Planum and the global hydrology of Mars.
- Author
-
Andrews-Hanna JC, Phillips RJ, and Zuber MT
- Abstract
The Opportunity Mars Exploration Rover found evidence for groundwater activity in the Meridiani Planum region of Mars in the form of aeolian and fluvial sediments composed of sulphate-rich grains. These sediments appear to have experienced diagenetic modification in the presence of a fluctuating water table. In addition to the extensive secondary aqueous alteration, the primary grains themselves probably derive from earlier playa evaporites. Little is known, however, about the hydrologic processes responsible for this environmental history-particularly how such extensive evaporite deposits formed in the absence of a topographic basin. Here we investigate the origin of these deposits, in the context of the global hydrology of early Mars, using numerical simulations, and demonstrate that Meridiani is one of the few regions of currently exposed ancient crust predicted to have experienced significant groundwater upwelling and evaporation. The global groundwater flow would have been driven primarily by precipitation-induced recharge and evaporative loss, with the formation of the Tharsis volcanic rise possibly playing a role through the burial of aquifers and induced global deformation. These results suggest that the deposits formed as a result of sustained groundwater upwelling and evaporation, rather than ponding within an enclosed basin. The evaporite formation coincided with a transition to more arid conditions that increased the relative impact of a deep-seated, global-scale hydrology on the surface evolution.
- Published
- 2007
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.