1. Mechanisms of Resistance to Oncogenic KRAS Inhibition in Pancreatic Cancer.
- Author
-
Dilly J, Hoffman MT, Abbassi L, Li Z, Paradiso F, Parent BD, Hennessey CJ, Jordan AC, Morgado M, Dasgupta S, Uribe GA, Yang A, Kapner KS, Hambitzer FP, Qiang L, Feng H, Geisberg J, Wang J, Evans KE, Lyu H, Schalck A, Feng N, Lopez AM, Bristow CA, Kim MP, Rajapakshe KI, Bahrambeigi V, Roth JA, Garg K, Guerrero PA, Stanger BZ, Cristea S, Lowe SW, Baslan T, Van Allen EM, Mancias JD, Chan E, Anderson A, Katlinskaya YV, Shalek AK, Hong DS, Pant S, Hallin J, Anderes K, Olson P, Heffernan TP, Chugh S, Christensen JG, Maitra A, Wolpin BM, Raghavan S, Nowak JA, Winter PS, Dougan SK, and Aguirre AJ
- Subjects
- Humans, Animals, Mice, Cell Line, Tumor, Carcinoma, Pancreatic Ductal drug therapy, Carcinoma, Pancreatic Ductal genetics, Carcinoma, Pancreatic Ductal pathology, Mutation, Pyrimidines pharmacology, Pyrimidines therapeutic use, Proto-Oncogene Proteins p21(ras) genetics, Pancreatic Neoplasms drug therapy, Pancreatic Neoplasms genetics, Pancreatic Neoplasms pathology, Pancreatic Neoplasms metabolism, Drug Resistance, Neoplasm
- Abstract
KRAS inhibitors demonstrate clinical efficacy in pancreatic ductal adenocarcinoma (PDAC); however, resistance is common. Among patients with KRASG12C-mutant PDAC treated with adagrasib or sotorasib, mutations in PIK3CA and KRAS, and amplifications of KRASG12C, MYC, MET, EGFR, and CDK6 emerged at acquired resistance. In PDAC cell lines and organoid models treated with the KRASG12D inhibitor MRTX1133, epithelial-to-mesenchymal transition and PI3K-AKT-mTOR signaling associate with resistance to therapy. MRTX1133 treatment of the KrasLSL-G12D/+; Trp53LSL-R172H/+; p48-Cre (KPC) mouse model yielded deep tumor regressions, but drug resistance ultimately emerged, accompanied by amplifications of Kras, Yap1, Myc, Cdk6, and Abcb1a/b, and co-evolution of drug-resistant transcriptional programs. Moreover, in KPC and PDX models, mesenchymal and basal-like cell states displayed increased response to KRAS inhibition compared to the classical state. Combination treatment with KRASG12D inhibition and chemotherapy significantly improved tumor control in PDAC mouse models. Collectively, these data elucidate co-evolving resistance mechanisms to KRAS inhibition and support multiple combination therapy strategies. Significance: Acquired resistance may limit the impact of KRAS inhibition in patients with PDAC. Using clinical samples and multiple preclinical models, we define heterogeneous genetic and non-genetic mechanisms of resistance to KRAS inhibition that may guide combination therapy approaches to improve the efficacy and durability of these promising therapies for patients. See related commentary by Marasco and Misale, p. 2018., (©2024 The Authors; Published by the American Association for Cancer Research.)
- Published
- 2024
- Full Text
- View/download PDF