1. Estimation of monthly snowmelt contribution to runoff using gridded meteorological data in SWAT model for Upper Alaknanda River Basin, India.
- Author
-
Biswas S and Biswas S
- Subjects
- United States, Atmosphere, Calibration, India, Rivers, Environmental Monitoring
- Abstract
The purpose of hydrologic modeling of a watershed is to gain valuable information about the processes occurring within watershed. With increasing temperature of the earth atmosphere, the snow fed mountainous river basins are going to get impacted severely. Lack of adequate weather station limits the scope of researches in these mountainous basins which are critical source of water resource for the country. However, improvement of satellite-based weather products has been able to nullify this barrier to great extent. In this study, a semi distributed hydrologic model of Upper Alaknanda river basin has been developed using gridded meteorological input data sourced from India Meteorological Department (IMD), National Aeronautics and Space Administration (NASA) Power, and The SWAT (Soil and water Assessment Tool) model. The calibration and validation of the model reflected satisfactory performance with the validation period (2013-2017) showing better match between simulated and observed flow than calibration period (2005-2012). The values of Nash-Sutcliffe efficiency, coefficient of determination, and Percent of bias for calibration period are 0.65, 0.67, and 14% respectively. Adoption of semi distributed approach for modeling enables to analyze the basin while preserving the heterogeneous nature of the basin. The spatiotemporal evaluation of snowmelt reveals that highest snowmelt was generated during month of April which also causes highest snowmelt contribution to runoff for April (59.76 %). The outcomes of this study reveals that satellite-based meteorological product can be adopted satisfactorily with SWAT model for estimation of snowmelt in upper Himalayan regions which gives a new direction of research in SWAT diaspora., (© 2023. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
- Published
- 2023
- Full Text
- View/download PDF