1. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease
- Author
-
Wang, Zeneng, Klipfell, Elizabeth, Bennett, Brian J., Koeth, Robert, Levison, Bruce S., DuGar, Brandon, Feldstein, Ariel E., Britt, Earl B., Fu, Xiaoming, Chung, Yoon-Mi, Wu, Yuping, Schauer, Phil, Smith, Jonathan D., Allayee, Hooman, Tang, W.H. Wilson, DiDonato, Joseph A., Lusis, Aldons J., and Hazen, Stanley L.
- Subjects
Metabolism -- Research -- Health aspects -- Physiological aspects ,Microbiota (Symbiotic organisms) -- Health aspects -- Research -- Physiological aspects ,Lecithin -- Physiological aspects -- Research -- Health aspects ,Cardiovascular diseases -- Risk factors -- Research ,Environmental issues ,Science and technology ,Zoology and wildlife conservation - Abstract
Metabolomics studies hold promise for the discovery of pathways linked to disease processes. Cardiovascular disease (CVD) represents the leading cause of death and morbidity worldwide. Here we used a metabolomics approach to generate unbiased small-molecule metabolic profiles in plasma that predict risk for CVD. Three metabolites of the dietary lipid phosphatidylcholine-choline, trimethylamine N-oxide (TMAO) and betaine-were identified and then shown to predict risk for CVD in an independent large clinical cohort. Dietary supplementation of mice with choline, TMAO or betaine promoted upregulation of multiple macrophage scavenger receptors linked to atherosclerosis, and supplementation with cholineorTMAO promoted atherosclerosis. Studies using germ- free mice confirmedacritical role for dietary choline and gut flora in TMAO production, augmented macrophage cholesterol accumulation and foam cell formation. Suppression of intestinal microflora in atherosclerosis-prone mice inhibited dietary-choline-enhanced atherosclerosis. Genetic variations controlling expression of flavin monooxygenases, an enzymatic source of TMAO, segregated with atherosclerosis in hyperlipidaemic mice. Discovery of a relationship between gut-flora-dependent metabolism of dietary phosphatidylcholine and CVD pathogenesis provides opportunities for the development of new diagnostic tests and therapeutic approaches for atherosclerotic heart disease., The pathogenesis of CVD includes genetic and environmental factors. A known environmental risk factor for the development of CVD is a diet rich in lipids. A relationship between blood cholesterol [...]
- Published
- 2011
- Full Text
- View/download PDF