1. Progressive dysfunction of nitric oxide synthase in a lamb model of chronically increased pulmonary blood flow: a role for oxidative stress
- Author
-
Oishi, Peter E., Wiseman, Dean A., Sharma, Shruti, Kumar, Sanjiv, Hou, Yali, Datar, Sanjeev A., Azakie, Anthony, Johengen, Michael J., Harmon, Cynthia, Fratz, Sohrab, Fineman, Jeffrey R., and Black, Stephen M.
- Subjects
Hemoproteins -- Health aspects ,Heart failure -- Risk factors ,Biological sciences - Abstract
Cardiac defects associated with increased pulmonary blood flow result in pulmonary vascular dysfunction that may relate to a decrease in bioavailable nitric oxide (NO). An 8-mm graft (shunt) was placed between the aorta and pulmonary artery in 30 late gestation fetal lambs; 27 fetal lambs underwent a sham procedure. Hemodynamic responses to ACh (1 [micro]g/kg) and inhaled NO (40 ppm) were assessed at 2, 4, and 8 wk of age. Lung tissue nitric oxide synthase (NOS) activity, endothelial NOS (eNOS), neuronal NOS (nNOS), inducible NOS (iNOS), and heat shock protein 90 (HSP90), lung tissue and plasma nitrate and nitrite (N[O.sub.x]), and lung tissue superoxide anion and nitrated eNOS levels were determined. In shunted lambs, ACh decreased pulmonary artery pressure at 2 wk (P < 0.05) but not at 4 and 8 wk. Inhaled NO decreased pulmonary artery pressure at each age (P < 0.05). In control lambs, ACh and inhaled NO decreased pulmonary artery pressure at each age (P < 0.05). Total NOS activity did not change from 2 to 8 wk in control lambs but increased in shunted lambs (ANOVA, P < 0.05). Conversely, [NO.sub.x] levels relative to NOS activity were lower in shunted lambs than controls at 4 and 8 wk (P < 0.05). eNOS protein levels were greater in shunted lambs than controls at 4 wk of age (P < 0.05). Superoxide levels increased from 2 to 8 wk in control and shunted lambs (ANOVA, P < 0.05) and were greater in shunted lambs than controls at all ages (P < 0.05). Nitrated eNOS levels were greater in shunted lambs than controls at each age (P < 0.05). We conclude that increased pulmonary blood flow results in progressive impairment of basal and agonist-induced NOS function, in part secondary to oxidative stress that decreases bioavailable NO. pulmonary circulation; oxidant stress; congenital heart disease; reactive oxygen species
- Published
- 2008