10 results on '"Zhentao He"'
Search Results
2. Effect of mixed meal replacement of soybean meal on growth performance, nutrient apparent digestibility, and gut microbiota of finishing pigs
- Author
-
Zhentao He, Shuai Liu, Xiaolu Wen, Shuting Cao, Xianliang Zhan, Lei Hou, Yaojie Li, Shaozhen Chen, Huayu Zheng, Dongyan Deng, Kaiguo Gao, Xuefen Yang, Zongyong Jiang, and Li Wang
- Subjects
rapeseed meal ,cotton meal ,sunflower meal ,finishing pigs ,short-chain fatty acid ,Veterinary medicine ,SF600-1100 - Abstract
IntroductionThis study was carried out to investigate the effects of mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacement soybean meal on growth performance, nutrient apparent digestibility, serum inflammatory factors and immunoglobulins, serum biochemical parameters, intestinal permeability, short-chain fatty acid content, and gut microbiota of finishing pigs.MethodsA total of 54 pigs with an average initial weight of 97.60 ± 0.30 kg were selected and randomly divided into 3 groups according to their initial weight, with 6 replicates in each group and 3 pigs in each replicate. The trial period was 26 days. The groups were as follows: control group (CON), fed corn-soybean meal type basal diet; Corn-soybean-mixed meal group (CSM), fed corn-soybean meal-mixed meal diet with a ratio of rapeseed meal, cotton meal, and sunflower meal of 1:1:1 to replace 9.06% soybean meal in the basal diet; Corn-mixed meal group (CMM), fed a corn-mixed meal diet with a ratio of Rapeseed meal, Cotton meal and Sunflower meal of 1:1:1 to replace soybean meal in the basal diet completely. The crude protein level of the three diets was maintained at 12.5%.ResultsOur findings revealed no significant impact of replacing soybean meal with the mixed meal (rapeseed meal, cotton meal, and sunflower meal) on the ADG (Average daily gain), ADFI (Average daily feed intake), and F/G (Feed gain ratio) (P > 0.05), or crude protein, crude fat, and gross energy (P > 0.05) in the diet of finishing pigs. Compared with the CON group, the serum interleukin 6 (IL-6) and interleukin 10 (IL-10) concentrations were significantly decreased in the CMM group (P < 0.05). However, there is no significant effect of the mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacing soybean meal in the diet on the serum interleukin 1β (IL-1β), interleukin 8 (IL-8), tumor necrosis factor-alpha (TNF-α), immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) concentrations (P > 0.05). Concordantly, there is no significant effect of mixed meal (rapeseed meal, cotton meal, and sunflower meal) replacing soybean meal in the diet on the serum antioxidant capacity, such as total antioxidant capacity (T-AOC), catalase (CAT), and malondialdehyde (MDA) levels of finishing pigs. Moreover, compared with the CON group, serum low-density lipoprotein (LDL-C) levels were significantly lower in the CSM group (P < 0.05) and their total bilirubin (TBIL) levels were significantly lower in the CMM group (P < 0.05). There is not a significant effect on serum D-lactate and diamine oxidase (DAO) concentrations (P > 0.05). The next section of the survey showed that the replacement of soybean meal with a mixed meal (rapeseed meal, cotton meal, and sunflower meal) in the diet did not significantly influence the acetic acid, propionic acid, butyric acid, valeric acid, isobutyric acid, and isovaleric acid in the colon contents (P > 0.05). Furthermore, compared with the CON group, the CMM group diet significantly increased the abundance of Actinobacteria at the phylum level (P < 0.05), U_Actinobacteria at the class level (P < 0.05), and U_Bacteria at the class level (P < 0.05). The result also showed that the CMM group significantly reduced the abundance of Oscillospirales at the order level (P < 0.05) and Streptococcaceae at the family level (P < 0.05) compared with the CON group. The Spearman correlation analysis depicted a statistically significant positive correlation identified at the class level between the relative abundance of U_Bacteria and the serum T. BILI concentrations (P < 0.05). Moreover, a significant negative correlation was detected at the order level between the relative abundance of Oscillospirales and the levels of acetic and propionic acids in the colonic contents (P < 0.05). Additionally, there was a significant positive correlation between the serum concentrations of IL-6 and IL-10 and the relative abundance of the family Streptococcaceae (P < 0.05).DiscussionThis study demonstrated that the mixed meal (rapeseed meal, cotton meal, and sunflower meal) as a substitute for soybean meal in the diet had no significant negative effects on the growth performance, nutrient apparent digestibility, serum immunoglobulins, serum antioxidant capacity, intestinal permeability, short-chain fatty acid content, and diversity of gut microbiota of finishing pigs. These results can help develop further mixed meals (rapeseed meal, cotton meal, and sunflower meal) as a functional alternative feed ingredient for soybean meals in pig diets.
- Published
- 2024
- Full Text
- View/download PDF
3. Effect of Miscellaneous Meals Replacing Soybean Meal in Feed on Growth Performance, Serum Biochemical Parameters, and Microbiota Composition of 25–50 kg Growing Pigs
- Author
-
Xianliang Zhan, Lei Hou, Zhentao He, Shuting Cao, Xiaolu Wen, Shuai Liu, Yaojie Li, Shaozhen Chen, Huayu Zheng, Dongyan Deng, Kaiguo Gao, Xuefen Yang, Zongyong Jiang, and Li Wang
- Subjects
miscellaneous meals ,soybean meal ,growth performance ,microbiota ,Veterinary medicine ,SF600-1100 ,Zoology ,QL1-991 - Abstract
The present study aims to determine the effect of miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower meal) replacing soybean meal in feed on growth performance, apparent digestibility of nutrients, serum biochemical parameters, serum free amino acid content, microbiota composition and SCFAs content in growing pigs (25–50 kg). A total of 72 (Duroc × Landrace × Yorkshire) growing pigs with initial weights of 25.79 ± 0.23 kg were randomly divided into three treatments. The pigs were fed corn–soybean meal (CON), corn–soybean–miscellaneous meals (CSM), and corn–miscellaneous meals (CMM). Each treatment included six replicates with four pigs per pen (n = 24, 12 barrows and 12 gilts). Soybean meal accounted for 22.10% of the basal diet in the CON group. In the CSM group, miscellaneous meals partially replaced soybean meal with a mixture of 4.50% rapeseed meal, 3.98% cottonseed meal, and 4.50% sunflower meal. In the CMM group, miscellaneous meals entirely replaced soybean meal with a mixture of 8.50% rapeseed meal, 8.62% cottonseed meal, and 8.5% sunflower. The results showed that compared with the CON, the CSM and CMM groups significantly improved the average daily gain (ADG) of growing pigs during the 25–50 kg stage (p < 0.05) but had no effects on average daily feed intake (ADFI) and average daily feed intake/average daily gain (F/G) (p > 0.05). Moreover, the CMM group significantly reduced nutrient apparent digestibility of gross energy compared with the CON group. The serum biochemical parameters results showed that the CSM group significantly improved the contents of total protein (TP) compared with the CON group (p < 0.05). The CMM group significantly improved the contents of total protein (TP), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) compared with the CON group in serum (p < 0.05). In comparison with the CON group, the CMM group also significantly improved lysine (Lys), threonine (Thr), valine (Val), isoleucine (Ile), leucine (Leu), phenylalanine (Phe), arginine (Arg), and citrulline (Cit) levels in serum (p < 0.05). However, the CMM group significantly decreased non-essential amino acid content glycine (Gly) in serum compared with CON (p < 0.05), while compared with the CON group, the CSM and CMM groups had no significant effects on the relative abundance, the alpha-diversity, or the beta-diversity of fecal microbiota. Moreover, compared with the CON group, the CSM group significantly increased butyric acid and valeric acid contents of short-chain fatty acids (SCFAs) in feces (p < 0.05). In contrast to the CON group, the CMM group significantly reduced the contents of SCFAs in feces, including acetic acid, propionic acid, and isobutyric acid (p < 0.05). Collectively, the results of the present study indicate that miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower meal) can partially replace the soybean meal and significantly improve the growth performance of growing pigs during the 25–50 kg stage. Thus, miscellaneous meals are a suitable protein source as basal diets to replace soybean meals for 25–50 kg growing pigs. These results can be helpful to further develop miscellaneous meals as a functional alternative feed ingredient to soybean meal.
- Published
- 2024
- Full Text
- View/download PDF
4. PTBP1 promotes hepatocellular carcinoma progression by regulating the skipping of exon 9 in NUMB pre-mRNA
- Author
-
Zhentao He, Qianhua Ni, Xichun Li, Mingyu Zhao, Qingguo Mo, and Yongsheng Duo
- Subjects
Hepatocellular carcinoma ,Alternative splicing ,PTBP1 ,NUMB ,Science (General) ,Q1-390 ,Social sciences (General) ,H1-99 - Abstract
Aberrant alternative splicing is one of the important causes of cancer. Polypyrimidine tract binding protein 1 (PTBP1) has been found to be involved in splicing regulation in a variety of tumors. Here, we observed significant up-regulation of PTBP1 in primary hepatocellular carcinoma (HCC) tissues. High levels of PTBP1 expression were associated with poor prognosis and increased metastatic potential in HCC. In vitro studies demonstrated that elevated PTBP1 promoted both migration and invasion by HCC cells. In contrast, knockdown of PTBP1 significantly inhibited the migration and invasion of HCC cells in vitro. Further, up-regulation of PTBP1 markedly accumulated the expression of oncogenic isoform of NUMB, NUMB-PRRL. We observed two isoforms of NUMB, NUMB-PRRL and NUMB-PRRS exhibit opposite function in HCC cells, which partially explain PTBP1 plays the tumor promoting roles in a NUMB splicing-dependent manner. In summary, our study indicates that PTBP1 may serve as an oncogene in HCC patients by regulating the alternative splicing of NUMB exon 9 and could potentially serve as a prognostic indicator.
- Published
- 2023
- Full Text
- View/download PDF
5. Dietary replacement of inorganic trace minerals with lower levels of organic trace minerals leads to enhanced antioxidant capacity, nutrient digestibility, and reduced fecal mineral excretion in growing-finishing pigs
- Author
-
Yunxia Xiong, Bailei Cui, Zhentao He, Shuai Liu, Qiwen Wu, Hongbo Yi, Fei Zhao, Zongyong Jiang, Shenglan Hu, and Li Wang
- Subjects
organic trace minerals ,growing-finishing pigs ,antioxidant capacity ,apparent nutrient digestibility ,fecal mineral excretion ,Veterinary medicine ,SF600-1100 - Abstract
IntroductionMore effective and environment-friendly organic trace minerals have great potential to replace the inorganic elements in the diets of livestock. This study aimed to investigate the effects of dietary replacement of 100% inorganic trace minerals (ITMs) with 30–60% organic trace minerals (OTMs) on the performance, meat quality, antioxidant capacity, nutrient digestibility, and fecal mineral excretion and to assess whether low-dose OTMs could replace whole ITMs in growing-finishing pigs' diets.MethodsA total of 72 growing-finishing pigs (Duroc × Landrace × Yorkshire) with an initial average body weight of 74.25 ± 0.41 kg were selected and divided into four groups with six replicates per group and three pigs per replicate. The pigs were fed either a corn-soybean meal basal diet containing commercial levels of 100% ITMs or a basal diet with 30, 45, or 60% amino acid-chelated trace minerals instead of 100% ITMs, respectively. The trial ended when the pigs' weight reached ~110 kg.ResultsThe results showed that replacing 100% ITMs with 30–60% OTMs had no adverse effect on average daily gain, average daily feed intake, feed/gain, carcass traits, or meat quality (P > 0.05) but significantly increased serum transferrin and calcium contents (P < 0.05). Meanwhile, replacing 100% ITMs with OTMs tended to increase serum T-SOD activity (0.05 ≤ P < 0.1), and 30% OTMs significantly increased muscle Mn-SOD activity (P < 0.05). Moreover, replacing 100% ITMs with OTMs tended to increase the apparent digestibility of energy, dry matter, and crude protein (0.05 ≤ P < 0.1) while significantly reducing the contents of copper, zinc, and manganese in feces (P < 0.05).DiscussionIn conclusion, dietary supplementation with 30–60% OTMs has the potential to replace 100% ITMs for improving antioxidant capacity and nutrient digestibility and for reducing fecal mineral excretion without compromising the performance of growing-finishing pigs.
- Published
- 2023
- Full Text
- View/download PDF
6. Research Note: Dietary resveratrol supplementation improves the hepatic antioxidant capacity and attenuates lipopolysaccharide-induced inflammation in yellow-feathered broilers
- Author
-
Cui Zhu, Xiaoyan Nie, Zhentao He, Taidi Xiong, Yaojie Li, Yinshan Bai, and Huihua Zhang
- Subjects
yellow-feathered broiler ,resveratrol ,lipopolysaccharide ,antioxidant capacity ,inflammation ,Animal culture ,SF1-1100 - Abstract
ABSTRACT: This experiment investigated the protective effect of resveratrol (RES) on the hepatic antioxidant status and systemic inflammation in yellow-feathered broilers challenged with lipopolysaccharide (LPS). A total of 240 healthy 1-day-old yellow-feathered broilers were randomly divided into 4 groups (control, LPS, RES, and RES+LPS), with 5 replicates of 12 chickens per replicate. The experiment lasted 21 d. The broilers were fed with either the basal diet or the basal diet supplemented with 400 mg/kg RES followed by intraperitoneal challenge with LPS (1 mg/kg body weight) or the same amount of saline at d 16, 18, and 20. The results showed that dietary RES supplementation could improve the activities of total antioxidant capacity (T-AOC) and superoxide dismutase (SOD) in the liver of yellow-feathered broilers challenged with LPS (P < 0.05). Furthermore, LPS challenge increased the plasma interleukin-17 (IL-17) concentration, the hepatic interleukin-6 (IL-6) and interleukin-1β (IL-1β) concentrations, as well as the concentrations of tumor necrosis factor (TNF-α), IL-6, and IL-1β in the spleen (P < 0.05), and decreased the transforming growth factor-β (TGF-β) concentrations in the plasma, liver, and spleen (P < 0.05). However, dietary RES supplementation could reduce the increased TNF-α levels in the plasma, liver, and spleen induced by LPS, and increased TGF-β level in the liver and spleen (P < 0.05). Collectively, these results suggest that dietary RES supplementation could effectively improve the hepatic antioxidant capacity and attenuate LPS-induced inflammation in yellow-feathered broilers during the starter stage.
- Published
- 2023
- Full Text
- View/download PDF
7. Effect of Miscellaneous Meal Replacements for Soybean Meal on Growth Performance, Serum Biochemical Parameters, and Gut Microbiota of 50–75 kg Growing Pigs
- Author
-
Zhentao He, Xianliang Zhan, Shuting Cao, Xiaolu Wen, Lei Hou, Shuai Liu, Huayu Zheng, Kaiguo Gao, Xuefen Yang, Zongyong Jiang, and Li Wang
- Subjects
soybean meal ,miscellaneous meal ,growing pigs ,growth performance ,gut microbiota ,Veterinary medicine ,SF600-1100 ,Zoology ,QL1-991 - Abstract
This study was carried out to investigate the effects of miscellaneous meal (rapeseed meal, cottonseed meal, and sunflower seed meal) as a replacement for soybean meal on growth performance, apparent nutrient digestibility, serum biochemical parameters, serum free amino acid contents, and gut microbiota of 50–75 kg growing pigs. A total of 54 healthy growing pigs (Duroc × Landrace × Yorkshire) with initial body weights (BWs) of 50.64 ± 2.09 kg were randomly divided into three treatment groups, which included the corn–soybean meal group (CON), corn–soybean–miscellaneous meal group (CSM), and corn–miscellaneous meal group (CM). Each treatment included six replicates with three pigs in each replicate. Dietary protein levels were maintained at 15% in all three treatment groups. Additional rapeseed meals, cottonseed meals, and sunflower seed meals were added to the CSM group’s meals to partially replace the 10.99% soybean meal in the CON group in a 1:1:1 ratio. Pigs in the CM group were fed a diet with a mixture of miscellaneous meals (7.69% rapeseed meal, 7.69% cottonseed meal, and 7.68% sunflower seed meal) to totally replace soybean meal. Our findings revealed that there was no significant impact of replacing soybean meal with miscellaneous meal on the ADG (average daily gain), ADFI (average daily feed intake), or F/G (feed-to-gain ratio) (p > 0.05) of growing pigs weighing 50–75 kg, nor on the crude protein, crude fat, or gross energy (p > 0.05) of the diet. On the other hand, compared to the CON group, the CM group exhibited significantly elevated serum alanine aminotransferase (ALT) and triglyceride (TG) levels (p < 0.05), while urea levels were significantly reduced (p < 0.05). No significant effect was observed on the serum free amino acid contents (p > 0.05) following the substitution of soybean meal with miscellaneous meal. A t-test analysis indicated that compared with the CON group, the CM group exhibited a significantly diminished abundance of Euryachaeota at the phylum level and augmented abundance of Desulfobacterota at the genus level. This study demonstrated that the miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower seed meal) as a substitute for soybean meal in the diet had no significant negative effects on the growth performance, apparent nutrient digestibility, serum amino acid content, or diversity of fecal microbiota in 50–75 kg growing pigs. These results can be helpful in developing further miscellaneous meals (rapeseed meal, cottonseed meal, and sunflower seed meal) as functional alternative feed ingredients to soybean meal in pig diets.
- Published
- 2023
- Full Text
- View/download PDF
8. Effect of dietary resveratrol supplementation on growth performance, antioxidant capacity, intestinal immunity and gut microbiota in yellow-feathered broilers challenged with lipopolysaccharide
- Author
-
Zhentao He, Yaojie Li, Taidi Xiong, Xiaoyan Nie, Huihua Zhang, and Cui Zhu
- Subjects
lipopolysaccharide ,resveratrol ,yellow-feathered broilers ,growth performance ,gut microbiota ,Microbiology ,QR1-502 - Abstract
Resveratrol (RES) displays strong antioxidant and anti-inflammatory properties in protecting the animals from various stressors and inflammatory injuries, but its interrelationship with the gut microbiota remained largely unclear. This study was carried out to investigate the effects of dietary RES supplementation on growth performance, antioxidant capacity, intestinal immunity and gut microbiota in yellow-feathered broilers challenged by lipopolysaccharide (LPS). A total of 240 yellow-feathered broilers were randomly assigned to four treatment groups in a 2 × 2 factorial design. The broilers were fed with the control diet or control diet supplemented with 400 mg/kg RES, followed by challenge with LPS or the same amount of saline. Dietary RES supplementation significantly alleviated the decreases in the final body weight (BW), average daily gain (ADG), and ADFI induced by LPS (P < 0.05). LPS challenge significantly increased plasma concentrations of triglyceride, high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and cortisol levels, but decreased triiodothyronine (T3) and insulin levels (P < 0.05). Dietary supplementation with RES significantly reversed the elevated creatinine concentrations and the decreased concentrations of T3 and insulin caused by LPS (P < 0.05). Moreover, dietary RES supplementation significantly increased plasma total antioxidant capacity (T-AOC) and catalase (CAT) activities and superoxide dismutase (SOD) and T-AOC activities in jejunal mucosa and reduced malondialdehyde (MDA) concentration in the plasma (P < 0.05). The reduction in the villus height to crypt depth ratio in duodenum, jejunum and ileum and the shortening of villus height in jejunum and ileum caused by LPS were also alleviated by RES treatment (P < 0.05). Furthermore, the increased concentrations of intestinal tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β caused by LPS were significantly decreased by RES treatment (P < 0.05). Dietary RES treatment increased the mRNA expression of claudin-1, claudin-5, occludin, and zonula occludens-1 (ZO-1), and decreased mRNA expression of IL-1β, IL-8, IL-17, and TNF-α after LPS challenge (P < 0.05). Dietary RES treatments significantly decreased the dominance of cecal microbiota, and increased the Pieiou-e and Simpson index. Moreover, dietary RES supplementation increased relative abundance of UCG_ 009, Erysipelotrichaceae, Christensenellaceae_R-7_group, Anaerotruncus, RF39, and Ruminococcus while decreasing the abundance of Alistipes at genus level. Spearman correlation analysis revealed that the microbes at the order and genus levels significantly correlated with indicators of growth performance, antioxidant capacity, and intestinal health. Collectively, dietary supplementation with 400 mg/kg RES could improve growth performance and antioxidant capacity, and modulate intestinal immunity in yellow-feathered broilers challenged by LPS at early stage, which might be closely associated with the regulation of gut microbiota community composition.
- Published
- 2022
- Full Text
- View/download PDF
9. Research on Recognition Method of Electrical Components Based on YOLO V3
- Author
-
Haipeng Chen, Zhentao He, Bowen Shi, and Tie Zhong
- Subjects
Deep Learning ,SRCNN ,YOLO V3 ,electrical components ,object detection ,Electrical engineering. Electronics. Nuclear engineering ,TK1-9971 - Abstract
The reliability of electrical components affects the stable operation of the power system. Electrical components inspection has long been important issues in the intelligent power system. The main problems of traditional recognition methods of electrical components are low detection accuracy and poor real-time performance, which are challenging to extract necessary features from the inspection images. This paper proposes a way to detect the electrical components in the Unmanned Aerial Vehicle (UAV) inspection image based on You Only Look Once (YOLO) V3 algorithm. Due to some of the inspection images are not clear, which result in the reduction of the available dataset. On this basis, we adopt Super-Resolution Convolutional Neural Network (SRCNN) to realize super-resolution reconstruction on the blurred image, which achieves the expansion of the dataset. We compare the performance of the proposed method with other popular recognition methods. The results of experiment verify the effectiveness of the proposed method, and the technique reaches high recognition accuracy, good robustness, and strong real-time performance for UAV power inspection system.
- Published
- 2019
- Full Text
- View/download PDF
10. AIE-Active Photosensitizers: Manipulation of Reactive Oxygen Species Generation and Applications in Photodynamic Therapy
- Author
-
Hao Yu, Binjie Chen, Huiming Huang, Zhentao He, Jiangman Sun, Guan Wang, Xinggui Gu, and Ben Zhong Tang
- Subjects
aggregation-induced emission ,photosensitizer ,reactive oxygen species ,photodynamic therapy ,aggregation microenvironment ,Biotechnology ,TP248.13-248.65 - Abstract
Photodynamic therapy (PDT) is a non-invasive approach for tumor elimination that is attracting more and more attention due to the advantages of minimal side effects and high precision. In typical PDT, reactive oxygen species (ROS) generated from photosensitizers play the pivotal role, determining the efficiency of PDT. However, applications of traditional PDT were usually limited by the aggregation-caused quenching (ACQ) effect of the photosensitizers employed. Fortunately, photosensitizers with aggregation-induced emission (AIE-active photosensitizers) have been developed with biocompatibility, effective ROS generation, and superior absorption, bringing about great interest for applications in oncotherapy. In this review, we review the development of AIE-active photosensitizers and describe molecule and aggregation strategies for manipulating photosensitization. For the molecule strategy, we describe the approaches utilized for tuning ROS generation by attaching heavy atoms, constructing a donor-acceptor effect, introducing ionization, and modifying with activatable moieties. The aggregation strategy to boost ROS generation is reviewed for the first time, including consideration of the aggregation of photosensitizers, polymerization, and aggregation microenvironment manipulation. Moreover, based on AIE-active photosensitizers, the cutting-edge applications of PDT with NIR irradiated therapy, activatable therapy, hypoxic therapy, and synergistic treatment are also outlined.
- Published
- 2022
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.