1. Mitigating excessive heat in Arabica coffee using nanosilicon and seaweed extract to enhance element homeostasis and photosynthetic recovery
- Author
-
Ekkachak Chandon, Patchawee Nualkhao, Metee Vibulkeaw, Rujira Tisarum, Thapanee Samphumphuang, Jianqiang Sun, Suriyan Cha-um, and Suravoot Yooyongwech
- Subjects
Arabica coffee ,Chlorophyll content ,High temperature ,Photosynthetic efficiency ,Silicon-magnesium homeostasis ,Botany ,QK1-989 - Abstract
Abstract Background Global warming-related temperature increases have a substantial effect on plant and human health. The Arabica coffee plant is susceptible to growing in many places across the world where temperatures are rising. This study examines how nanosilicon and seaweed extracts can improve Arabica coffee plant resilience during heat stress treatment (49.0 ± 0.3 °C) by maintaining mineral homeostasis and photosynthetic ability upon recovery. Results The principal component analysis arrangement of four treatments, nanosilicon (Si), seaweed extract (SWE), Si + SWE, and control (CT), showed each element ratio of magnesium, phosphorus, chloride, potassium, manganese, iron, copper, and zinc per silicon in ambient temperature and heat stress that found influenced upper shoot rather than basal shoot and root within 74.4% of largest feasible variance as first principal component. Magnesium and iron were clustered within the silicon group, with magnesium dominating and leading to a significant increase (p ≤ 0.05) in magnesium-to-silicon ratio in the upper shoot under heat conditions, especially in Si and Si + SWE treated plants (1.11 and 1.29 fold over SWE treated plant, respectively). The SWE and Si + SWE treated plants preserved chlorophyll content (15.01% and 28.67% over Si-treated plant, respectively) under heat stress, while the Si and Si + SWE treated plants restored photosynthetic efficiency (Fv/Fm) better than the SWE treated plant. Conclusions The concomitant of the Si + SWE treatment synergistically protected photosynthetic pigments and Fv/Fm by adjusting the magnesium-silicon homeostasis perspective in Arabica coffee to protect real-world agricultural practices and coffee cultivation under climate change scenarios.
- Published
- 2024
- Full Text
- View/download PDF