11 results on '"Luke Whiley"'
Search Results
2. Microbial Indoles: Key Regulators of Organ Growth and Metabolic Function
- Author
-
Peter Yuli Xing, Ruchi Agrawal, Anusha Jayaraman, Katherine Ann Martin, George Wei Zhang, Ee Ling Ngu, Llanto Elma Faylon, Staffan Kjelleberg, Scott A. Rice, Yulan Wang, Adesola T. Bello, Elaine Holmes, Jeremy K. Nicholson, Luke Whiley, and Sven Pettersson
- Subjects
germ-free ,gut microbiota ,host metabolism ,indoles ,organ function decline ,oxidative stress ,Biology (General) ,QH301-705.5 - Abstract
Gut microbes supporting body growth are known but the mechanisms are less well documented. Using the microbial tryptophan metabolite indole, known to regulate prokaryotic cell division and metabolic stress conditions, we mono-colonized germ-free (GF) mice with indole-producing wild-type Escherichia coli (E. coli) or tryptophanase-encoding tnaA knockout mutant indole-non-producing E. coli. Indole mutant E. coli mice showed multiorgan growth retardation and lower levels of glycogen, cholesterol, triglycerides, and glucose, resulting in an energy deficiency despite increased food intake. Detailed analysis revealed a malfunctioning intestine, enlarged cecum, and reduced numbers of enterochromaffin cells, correlating with a metabolic phenotype consisting of impaired gut motility, diminished digestion, and lower energy harvest. Furthermore, indole mutant mice displayed reduction in serum levels of tricarboxylic acid (TCA) cycle intermediates and lipids. In stark contrast, a massive increase in serum melatonin was observed—frequently associated with accelerated oxidative stress and mitochondrial dysfunction. This observational report discloses functional roles of microbe-derived indoles regulating multiple organ functions and extends our previous report of indole-linked regulation of adult neurogenesis. Since indoles decline by age, these results imply a correlation with age-linked organ decline and levels of indoles. Interestingly, increased levels of indole-3-acetic acid, a known indole metabolite, have been shown to correlate with younger biological age, further supporting a link between biological age and levels of microbe-derived indole metabolites. The results presented in this resource paper will be useful for the future design of food intervention studies to reduce accelerated age-linked organ decline.
- Published
- 2024
- Full Text
- View/download PDF
3. Systemic long-term metabolic effects of acute non-severe paediatric burn injury
- Author
-
Sofina Begum, Blair Z. Johnson, Aude-Claire Morillon, Rongchang Yang, Sze How Bong, Luke Whiley, Nicola Gray, Vanessa S. Fear, Leila Cuttle, Andrew J. A. Holland, Jeremy K. Nicholson, Fiona M. Wood, Mark W. Fear, and Elaine Holmes
- Subjects
Medicine ,Science - Abstract
Abstract A growing body of evidence supports the concept of a systemic response to non-severe thermal trauma. This provokes an immunosuppressed state that predisposes paediatric patients to poor recovery and increased risk of secondary morbidity. In this study, to understand the long-term systemic effects of non-severe burns in children, targeted mass spectrometry assays for biogenic amines and tryptophan metabolites were performed on plasma collected from child burn patients at least three years post injury and compared to age and sex matched non-burn (healthy) controls. A panel of 12 metabolites, including urea cycle intermediates, aromatic amino acids and quinolinic acid were present in significantly higher concentrations in children with previous burn injury. Correlation analysis of metabolite levels to previously measured cytokine levels indicated the presence of multiple cytokine-metabolite associations in the burn injury participants that were absent from the healthy controls. These data suggest that there is a sustained immunometabolic imprint of non-severe burn trauma, potentially linked to long-term immune changes that may contribute to the poor long-term health outcomes observed in children after burn injury.
- Published
- 2022
- Full Text
- View/download PDF
4. Cardiometabolic disease risk markers are increased following burn injury in children
- Author
-
Sofina Begum, Samantha Lodge, Drew Hall, Blair Z. Johnson, Sze How Bong, Luke Whiley, Nicola Gray, Vanessa S. Fear, Mark W. Fear, Elaine Holmes, Fiona M. Wood, and Jeremy K. Nicholson
- Subjects
metabolomics ,precision medicine ,cardiometabolic disease risk ,child health ,burn injury ,NMR ,Public aspects of medicine ,RA1-1270 - Abstract
IntroductionBurn injury in children causes prolonged systemic effects on physiology and metabolism leading to increased morbidity and mortality, yet much remains undefined regarding the metabolic trajectory towards specific health outcomes.MethodsA multi-platform strategy was implemented to evaluate the long-term immuno-metabolic consequences of burn injury combining metabolite, lipoprotein, and cytokine panels. Plasma samples from 36 children aged 4–8 years were collected 3 years after a burn injury together with 21 samples from non-injured age and sex matched controls. Three different 1H Nuclear Magnetic Resonance spectroscopic experiments were applied to capture information on plasma low molecular weight metabolites, lipoproteins, and α-1-acid glycoprotein.ResultsBurn injury was characterized by underlying signatures of hyperglycaemia, hypermetabolism and inflammation, suggesting disruption of multiple pathways relating to glycolysis, tricarboxylic acid cycle, amino acid metabolism and the urea cycle. In addition, very low-density lipoprotein sub-components were significantly reduced in participants with burn injury whereas small-dense low density lipoprotein particles were significantly elevated in the burn injured patient plasma compared to uninjured controls, potentially indicative of modified cardiometabolic risk after a burn. Weighted-node Metabolite Correlation Network Analysis was restricted to the significantly differential features (q
- Published
- 2023
- Full Text
- View/download PDF
5. The impact of bariatric surgery on serum tryptophan–kynurenine pathway metabolites
- Author
-
Kai Tai Derek Yeung, Nicholas Penney, Luke Whiley, Hutan Ashrafian, Matthew R. Lewis, Sanjay Purkayastha, Ara Darzi, and Elaine Holmes
- Subjects
Medicine ,Science - Abstract
Abstract This study aims to explore the immediate effects of bariatric surgery on serum tryptophan–kynurenine pathway metabolites in individuals with type 2 diabetes and BMI > 30. With the goal of providing insight into the link between tryptophan pathway metabolites, type 2 diabetes, and chronic obesity-induced inflammation. This longitudinal study included 20 participants. Half were diagnosed with type 2 diabetes. 11 and 9 underwent RYGB and SG respectively. Blood samples were obtained at pre-operative and 3 months post-operative timepoints. Tryptophan and downstream metabolites of the kynurenine pathway were quantified with an ultrahigh-performance liquid chromatography tandem mass spectrometry with electrospray ionisation method. At 3 months post-operation, RYGB led to significant reductions in tryptophan, kynurenic acid and xanthurenic acid levels when compared to baseline. Significant reductions of the same metabolites after surgery were also observed in individuals with T2D irrespective of surgical procedure. These metabolites were significantly correlated with serum HbA1c levels and BMI. Bariatric surgery, in particular RYGB reduces serum levels of tryptophan and its downstream kynurenine metabolites. These metabolites are associated with T2D and thought to be potentially mechanistic in the systemic processes of obesity induced inflammation leading to insulin resistance. Its reduction after surgery is associated with an improvement in glycaemic control (HbA1c).
- Published
- 2022
- Full Text
- View/download PDF
6. Metabolic phenotyping reveals a reduction in the bioavailability of serotonin and kynurenine pathway metabolites in both the urine and serum of individuals living with Alzheimer’s disease
- Author
-
Luke Whiley, Katie E. Chappell, Ellie D’Hondt, Matthew R. Lewis, Beatriz Jiménez, Stuart G. Snowden, Hilkka Soininen, Iwona Kłoszewska, Patrizia Mecocci, Magda Tsolaki, Bruno Vellas, Jonathan R. Swann, Abdul Hye, Simon Lovestone, Cristina Legido-Quigley, Elaine Holmes, and on behalf of AddNeuroMed consortium
- Subjects
Alzheimer’s disease ,Kynurenine ,Tryptophan ,Serotonin ,Metabolic phenotyping ,Mass spectrometry ,Neurosciences. Biological psychiatry. Neuropsychiatry ,RC321-571 ,Neurology. Diseases of the nervous system ,RC346-429 - Abstract
Abstract Background Both serotonergic signalling disruption and systemic inflammation have been associated with the pathogenesis of Alzheimer’s disease (AD). The common denominator linking the two is the catabolism of the essential amino acid, tryptophan. Metabolism via tryptophan hydroxylase results in serotonin synthesis, whilst metabolism via indoleamine 2,3-dioxygenase (IDO) results in kynurenine and its downstream derivatives. IDO is reported to be activated in times of host systemic inflammation and therefore is thought to influence both pathways. To investigate metabolic alterations in AD, a large-scale metabolic phenotyping study was conducted on both urine and serum samples collected from a multi-centre clinical cohort, consisting of individuals clinically diagnosed with AD, mild cognitive impairment (MCI) and age-matched controls. Methods Metabolic phenotyping was applied to both urine (n = 560) and serum (n = 354) from the European-wide AddNeuroMed/Dementia Case Register (DCR) biobank repositories. Metabolite data were subsequently interrogated for inter-group differences; influence of gender and age; comparisons between two subgroups of MCI - versus those who remained cognitively stable at follow-up visits (sMCI); and those who underwent further cognitive decline (cMCI); and the impact of selective serotonin reuptake inhibitor (SSRI) medication on metabolite concentrations. Results Results revealed significantly lower metabolite concentrations of tryptophan pathway metabolites in the AD group: serotonin (urine, serum), 5-hydroxyindoleacetic acid (urine), kynurenine (serum), kynurenic acid (urine), tryptophan (urine, serum), xanthurenic acid (urine, serum), and kynurenine/tryptophan ratio (urine). For each listed metabolite, a decreasing trend in concentrations was observed in-line with clinical diagnosis: control > MCI > AD. There were no significant differences in the two MCI subgroups whilst SSRI medication status influenced observations in serum, but not urine. Conclusions Urine and serum serotonin concentrations were found to be significantly lower in AD compared with controls, suggesting the bioavailability of the neurotransmitter may be altered in the disease. A significant increase in the kynurenine/tryptophan ratio suggests that this may be a result of a shift to the kynurenine metabolic route due to increased IDO activity, potentially as a result of systemic inflammation. Modulation of the pathways could help improve serotonin bioavailability and signalling in AD patients.
- Published
- 2021
- Full Text
- View/download PDF
7. Urinary metabolic phenotyping for Alzheimer’s disease
- Author
-
Natalja Kurbatova, Manik Garg, Luke Whiley, Elena Chekmeneva, Beatriz Jiménez, María Gómez-Romero, Jake Pearce, Torben Kimhofer, Ellie D’Hondt, Hilkka Soininen, Iwona Kłoszewska, Patrizia Mecocci, Magda Tsolaki, Bruno Vellas, Dag Aarsland, Alejo Nevado-Holgado, Benjamine Liu, Stuart Snowden, Petroula Proitsi, Nicholas J. Ashton, Abdul Hye, Cristina Legido-Quigley, Matthew R. Lewis, Jeremy K. Nicholson, Elaine Holmes, Alvis Brazma, and Simon Lovestone
- Subjects
Medicine ,Science - Abstract
Abstract Finding early disease markers using non-invasive and widely available methods is essential to develop a successful therapy for Alzheimer’s Disease. Few studies to date have examined urine, the most readily available biofluid. Here we report the largest study to date using comprehensive metabolic phenotyping platforms (NMR spectroscopy and UHPLC-MS) to probe the urinary metabolome in-depth in people with Alzheimer’s Disease and Mild Cognitive Impairment. Feature reduction was performed using metabolomic Quantitative Trait Loci, resulting in the list of metabolites associated with the genetic variants. This approach helps accuracy in identification of disease states and provides a route to a plausible mechanistic link to pathological processes. Using these mQTLs we built a Random Forests model, which not only correctly discriminates between people with Alzheimer’s Disease and age-matched controls, but also between individuals with Mild Cognitive Impairment who were later diagnosed with Alzheimer’s Disease and those who were not. Further annotation of top-ranking metabolic features nominated by the trained model revealed the involvement of cholesterol-derived metabolites and small-molecules that were linked to Alzheimer’s pathology in previous studies.
- Published
- 2020
- Full Text
- View/download PDF
8. Associations of the Lipidome with Ageing, Cognitive Decline and Exercise Behaviours
- Author
-
Maria Kadyrov, Luke Whiley, Belinda Brown, Kirk I. Erickson, and Elaine Holmes
- Subjects
lipidomics ,exercise ,ageing ,cognition ,metabolism ,metabolic phenotyping ,Microbiology ,QR1-502 - Abstract
One of the most recognisable features of ageing is a decline in brain health and cognitive dysfunction, which is associated with perturbations to regular lipid homeostasis. Although ageing is the largest risk factor for several neurodegenerative diseases such as dementia, a loss in cognitive function is commonly observed in adults over the age of 65. Despite the prevalence of normal age-related cognitive decline, there is a lack of effective methods to improve the health of the ageing brain. In light of this, exercise has shown promise for positively influencing neurocognitive health and associated lipid profiles. This review summarises age-related changes in several lipid classes that are found in the brain, including fatty acyls, glycerolipids, phospholipids, sphingolipids and sterols, and explores the consequences of age-associated pathological cognitive decline on these lipid classes. Evidence of the positive effects of exercise on the affected lipid profiles are also discussed to highlight the potential for exercise to be used therapeutically to mitigate age-related changes to lipid metabolism and prevent cognitive decline in later life.
- Published
- 2022
- Full Text
- View/download PDF
9. Advanced Microsamples: Current Applications and Considerations for Mass Spectrometry-Based Metabolic Phenotyping Pipelines
- Author
-
Jayden Lee Roberts, Luke Whiley, Nicola Gray, Melvin Gay, and Nathan G. Lawler
- Subjects
microsampling ,sample miniaturisation ,dried blood spot (DBS) ,dried plasma spot (DPS) ,metabolic phenotyping ,gas chromatography–mass spectrometry (GC–MS) ,Physics ,QC1-999 ,Chemistry ,QD1-999 - Abstract
Microsamples are collections usually less than 50 µL, although all devices that we have captured as part of this review do not fit within this definition (as some can perform collections of up to 600 µL); however, they are considered microsamples that can be self-administered. These microsamples have been introduced in pre-clinical, clinical, and research settings to overcome obstacles in sampling via traditional venepuncture. However, venepuncture remains the sampling gold standard for the metabolic phenotyping of blood. This presents several challenges in metabolic phenotyping workflows: accessibility for individuals in rural and remote areas (due to the need for trained personnel), the unamenable nature to frequent sampling protocols in longitudinal research (for its invasive nature), and sample collection difficulty in the young and elderly. Furthermore, venous sample stability may be compromised when the temperate conditions necessary for cold-chain transport are beyond control. Alternatively, research utilising microsamples extends phenotyping possibilities to inborn errors of metabolism, therapeutic drug monitoring, nutrition, as well as sport and anti-doping. Although the application of microsamples in metabolic phenotyping exists, it is still in its infancy, with whole blood being overwhelmingly the primary biofluid collected through the collection method of dried blood spots. Research into the metabolic phenotyping of microsamples is limited; however, with advances in commercially available microsampling devices, common barriers such as volumetric inaccuracies and the ‘haematocrit effect’ in dried blood spot microsampling can be overcome. In this review, we provide an overview of the common uses and workflows for microsampling in metabolic phenotyping research. We discuss the advancements in technologies, highlighting key considerations and remaining knowledge gaps for the employment of microsamples in metabolic phenotyping research. This review supports the translation of research from the ‘bench to the community’.
- Published
- 2022
- Full Text
- View/download PDF
10. Plasma Lipid Profiles Change with Increasing Numbers of Mild Traumatic Brain Injuries in Rats
- Author
-
Chidozie C. Anyaegbu, Harrison Szemray, Sarah C. Hellewell, Nathan G. Lawler, Kerry Leggett, Carole Bartlett, Brittney Lins, Terence McGonigle, Melissa Papini, Ryan S. Anderton, Luke Whiley, and Melinda Fitzgerald
- Subjects
lipidomics ,lipid ,mild traumatic brain injury ,repeated mild traumatic brain injury ,liquid chromatography–mass spectrometry ,Microbiology ,QR1-502 - Abstract
Mild traumatic brain injury (mTBI) causes structural, cellular and biochemical alterations which are difficult to detect in the brain and may persist chronically following single or repeated injury. Lipids are abundant in the brain and readily cross the blood-brain barrier, suggesting that lipidomic analysis of blood samples may provide valuable insight into the neuropathological state. This study used liquid chromatography-mass spectrometry (LC-MS) to examine plasma lipid concentrations at 11 days following sham (no injury), one (1×) or two (2×) mTBI in rats. Eighteen lipid species were identified that distinguished between sham, 1× and 2× mTBI. Three distinct patterns were found: (1) lipids that were altered significantly in concentration after either 1× or 2× F mTBI: cholesterol ester CE (14:0) (increased), phosphoserine PS (14:0/18:2) and hexosylceramide HCER (d18:0/26:0) (decreased), phosphoinositol PI(16:0/18:2) (increased with 1×, decreased with 2× mTBI); (2) lipids that were altered in response to 1× mTBI only: free fatty acid FFA (18:3 and 20:3) (increased); (3) lipids that were altered in response to 2× mTBI only: HCER (22:0), phosphoethanolamine PE (P-18:1/20:4 and P-18:0/20:1) (increased), lysophosphatidylethanolamine LPE (20:1), phosphocholine PC (20:0/22:4), PI (18:1/18:2 and 20:0/18:2) (decreased). These findings suggest that increasing numbers of mTBI induce a range of changes dependent upon the lipid species, which likely reflect a balance of damage and reparative responses.
- Published
- 2022
- Full Text
- View/download PDF
11. Diagnostic Potential of the Plasma Lipidome in Infectious Disease: Application to Acute SARS-CoV-2 Infection
- Author
-
Nicola Gray, Nathan G. Lawler, Annie Xu Zeng, Monique Ryan, Sze How Bong, Berin A. Boughton, Maider Bizkarguenaga, Chiara Bruzzone, Nieves Embade, Julien Wist, Elaine Holmes, Oscar Millet, Jeremy K. Nicholson, and Luke Whiley
- Subjects
metabolic phenotyping ,infectious disease ,lipids ,lipidomics ,liquid chromatography-mass spectrometry (LC-MS) ,SARS-CoV-2 ,Microbiology ,QR1-502 - Abstract
Improved methods are required for investigating the systemic metabolic effects of SARS-CoV-2 infection and patient stratification for precision treatment. We aimed to develop an effective method using lipid profiles for discriminating between SARS-CoV-2 infection, healthy controls, and non-SARS-CoV-2 respiratory infections. Targeted liquid chromatography–mass spectrometry lipid profiling was performed on discovery (20 SARS-CoV-2-positive; 37 healthy controls; 22 COVID-19 symptoms but SARS-CoV-2negative) and validation (312 SARS-CoV-2-positive; 100 healthy controls) cohorts. Orthogonal projection to latent structure-discriminant analysis (OPLS-DA) and Kruskal–Wallis tests were applied to establish discriminant lipids, significance, and effect size, followed by logistic regression to evaluate classification performance. OPLS-DA reported separation of SARS-CoV-2 infection from healthy controls in the discovery cohort, with an area under the curve (AUC) of 1.000. A refined panel of discriminant features consisted of six lipids from different subclasses (PE, PC, LPC, HCER, CER, and DCER). Logistic regression in the discovery cohort returned a training ROC AUC of 1.000 (sensitivity = 1.000, specificity = 1.000) and a test ROC AUC of 1.000. The validation cohort produced a training ROC AUC of 0.977 (sensitivity = 0.855, specificity = 0.948) and a test ROC AUC of 0.978 (sensitivity = 0.948, specificity = 0.922). The lipid panel was also able to differentiate SARS-CoV-2-positive individuals from SARS-CoV-2-negative individuals with COVID-19-like symptoms (specificity = 0.818). Lipid profiling and multivariate modelling revealed a signature offering mechanistic insights into SARS-CoV-2, with strong predictive power, and the potential to facilitate effective diagnosis and clinical management.
- Published
- 2021
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.