24 results on '"François, Billaut"'
Search Results
2. Editorial: Sex differences in sport performance
- Author
-
Franck Brocherie, François Billaut, and Louise Deldicque
- Subjects
female athlete ,women ,gender bias ,sexual dimorphism ,exercise performance ,Sports ,GV557-1198.995 - Published
- 2023
- Full Text
- View/download PDF
3. Influence of diet on acute endocannabinoidome mediator levels post exercise in active women, a crossover randomized study
- Author
-
Fabiola Forteza, Isabelle Bourdeau-Julien, Guillaume Q. Nguyen, Fredy Alexander Guevara Agudelo, Gabrielle Rochefort, Lydiane Parent, Volatiana Rakotoarivelo, Perrine Feutry, Cyril Martin, Julie Perron, Benoît Lamarche, Nicolas Flamand, Alain Veilleux, François Billaut, Vincenzo Di Marzo, and Frédéric Raymond
- Subjects
Medicine ,Science - Abstract
Abstract The extended endocannabinoid system, also termed endocannabinoidome, participates in multiple metabolic functions in health and disease. Physical activity can both have an acute and chronic impact on endocannabinoid mediators, as does diet. In this crossover randomized controlled study, we investigated the influence of diet on the peripheral response to acute maximal aerobic exercise in a sample of active adult women (n = 7) with no underlying metabolic conditions. We compared the impact of 7-day standardized Mediterranean diet (MedDiet) and control diet inspired by Canadian macronutrient intake (CanDiet) on endocannabinoidome and short-chain fatty acid metabolites post maximal aerobic exercise. Overall, plasmatic endocannabinoids, their congeners and some polyunsaturated fatty acids increased significantly post maximal aerobic exercise upon cessation of exercise and recovered their initial values within 1 h after exercise. Most N-acylethanolamines and polyunsaturated fatty acids increased directly after exercise when the participants had consumed the MedDiet, but not when they had consumed the CanDiet. This impact was different for monoacylglycerol endocannabinoid congeners, which in most cases reacted similarly to acute exercise while on the MedDiet or the CanDiet. Fecal microbiota was only minimally affected by the diet in this cohort. This study demonstrates that endocannabinoidome mediators respond to acute maximal aerobic exercise in a way that is dependent on the diet consumed in the week prior to exercise.
- Published
- 2022
- Full Text
- View/download PDF
4. Editorial: Managing physiological and biomechanical load-adaptation pathways in high performance sport: Challenges and opportunities
- Author
-
Paul S. R. Goods, François Billaut, Franck Brocherie, and Julien Louis
- Subjects
training load ,external load ,training monitoring ,training adaptation ,ergogenic aids ,Sports ,GV557-1198.995 - Published
- 2022
- Full Text
- View/download PDF
5. Hyperoxia Improves Repeated-Sprint Ability and the Associated Training Load in Athletes
- Author
-
Shannon Cyr-Kirk and François Billaut
- Subjects
oxygen supplementation ,training load ,multiple sprints ,team sports ,muscle oxygenation ,hyperoxic training ,Sports ,GV557-1198.995 - Abstract
This study investigated the impact of hyperoxic gas breathing (HYP) on repeated-sprint ability (RSA) and on the associated training load (TL). Thirteen team- and racquet-sport athletes performed 6-s all-out sprints with 24-s recovery until exhaustion (power decrement ≥ 15% for two consecutive sprints) under normoxic (NOR: FIO2 0.21) and hyperoxic (HYP: FIO2 0.40) conditions in a randomized, single-blind and crossover design. The following variables were recorded throughout the tests: mechanical indices, arterial O2 saturation (SpO2), oxygenation of the vastus lateralis muscle with near-infrared spectroscopy, and electromyographic activity of the vastus lateralis, rectus femoris, and gastrocnemius lateralis muscles. Session TL (work × rate of perceived exertion) and neuromuscular efficiency (work/EMG [Electromyography]) were calculated. Compared with NOR, HYP increased SpO2 (2.7 ± 0.8%, Cohen's effect size ES 0.55), the number of sprints (14.5 ± 8.6%, ES 0.28), the total mechanical work (13.6 ± 6.8%, ES 0.30), and the session TL (19.4 ± 7.0%, ES 0.33). Concomitantly, HYP increased the amplitude of muscle oxygenation changes during sprints (25.2 ± 11.7%, ES 0.36) and recovery periods (26.1 ± 11.4%, ES 0.37), as well as muscle recruitment (9.9 ± 12.1%, ES 0.74), and neuromuscular efficiency (6.9 ± 9.0%, ES 0.24). It was concluded that breathing a hyperoxic mixture enriched to 40% O2 improves the total work performed and the associated training load during an open-loop RSA session in trained athletes. This ergogenic impact may be mediated by metabolic and neuromuscular alterations.
- Published
- 2022
- Full Text
- View/download PDF
6. Editorial: Physiology and Physiopathology of Breath-Holding Activity
- Author
-
Frédéric Lemaître, François Billaut, and Fabrice Joulia
- Subjects
hypoxia ,cardiovascular ,pulmonary ,training ,sport ,Physiology ,QP1-981 - Published
- 2022
- Full Text
- View/download PDF
7. Blood Adenosine Increase During Apnea in Spearfishermen Reinforces the Efficiency of the Cardiovascular Component of the Diving Reflex
- Author
-
Marion Marlinge, Mohamed Chefrour, François Billaut, Marion Zavarro, Jean-Claude Rostain, Mathieu Coulange, Régis Guieu, and Fabrice Joulia
- Subjects
adenosine ,breath-hold ,diving reflex ,free-diving ,hypoxia ,training ,Physiology ,QP1-981 - Abstract
The physiopathology consequences of hypoxia during breath-hold diving are a matter of debate. Adenosine (AD), an ATP derivative, is suspected to be implicated in the adaptive cardiovascular response to apnea, because of its vasodilating and bradycardic properties, two clinical manifestations observed during voluntary apnea. The aim of this study was to evaluate the adenosine response to apnea-induced hypoxia in trained spearfishermen (SFM) who are used to perform repetitive dives for 4–5 h. Twelve SFM (11 men and 1 woman, mean age 41 ± 3 years, apnea experience: 18 ± 9 years) and 10 control (CTL) subjects (age 44 ± 7 years) were enrolled in the study. Subjects were asked to main a dry static apnea and stopped it when they began the struggle phase (average duration: SFM 120 ± 78 s, CTL 78 ± 12 s). Capillary blood samples were collected at baseline and immediately after the apnea and analyzed for standard parameters and adenosine blood concentration ([AD]b). Heart rate (HR), systolic (SBP), and diastolic (DBP) blood pressures were also recorded continuously during the apnea. During the apnea, an increase in SBP and DBP and a decrease in HR were observed in both SFM and CTL. At baseline, [AD]b was higher in SFM compared with CTL (1.05 ± 0.2 vs. 0.73 ± 0.11 μM, p < 0.01). [AD]b increased significantly at the end of the apnea in both groups, but the increase was significantly greater in SFM than in controls (+90.4 vs. +12%, p < 0.01). Importantly, in SFM, we also observed significant correlations between [AD]b and HR (R = −0.8, p = 0.02), SpO2 (R = −0.69, p = 0.01), SBP (R = −0.89, p = 0.02), and DBP (R = −0.68, p = 0.03). Such associations were absent in CTL. The adenosine release during apnea was associated with blood O2 saturation and cardiovascular parameters in trained divers but not in controls. These data therefore suggest that adenosine may play a major role in the adaptive cardiovascular response to apnea and could reflect the level of training.
- Published
- 2021
- Full Text
- View/download PDF
8. Special Issue 'Optimising Interval Training Prescription'
- Author
-
François Billaut
- Subjects
n/a ,Sports ,GV557-1198.995 - Abstract
High-intensity interval training, the so-called HIT, was popularized among athletes in the 1980′s and has been shown to be one of the most effective training modalities for improving athletic performance in various sports [...]
- Published
- 2022
- Full Text
- View/download PDF
9. Multi-ingredient pre-workout supplementation changes energy system contribution and improves performance during high-intensity intermittent exercise in physically active individuals: a double-blind and placebo controlled study
- Author
-
Caique Figueiredo, Fábio Santos Lira, Fabricio Eduardo Rossi, François Billaut, Rodrigo Loschi, and Camila S. Padilha
- Subjects
pre-workout drink ,performance fitness ,energy expenditure ,ergogenic aid ,Nutrition. Foods and food supply ,TX341-641 ,Sports medicine ,RC1200-1245 - Abstract
Background Nutritional ergogenic aids are commonly used to boost physiological adaptations to exercise and promote greater fitness gains. However, there is a paucity of data about multi-ingredient pre-workout supplementation (MIPS). Therefore, the aim of the present study was to investigate the acute effects of MIPS on the oxidative, glycolytic and ATP-CP energy systems contribution, time spent above 90% V̇O2max (T90% V̇O2max), excess post-exercise oxygen consumption (EPOC) magnitude, number of efforts and time to exhaustion during a high-intensity interval exercise (HIIE) session. Methods Twelve physically-active and healthy men completed the HIIE sessions that involved running bouts of 15 s on the treadmill at 120% of the maximum aerobic speed (MAS), interspersed with 15 s of passive recovery. Blood lactate was collected at immediately post, 3, 5, and 7 min post exercise. The contribution of ATP-CP, glycolytic and oxidative systems was analyzed at rest, during the HIIE sessions and for 20 min post. Performance variables (time to exhaustion, number of efforts) and oxygen consumption were also analyzed. Results MIPS significantly increased the number of efforts performed (MIPS: 41 ± 10 vs Placebo: 36 ± 12, p = 0.0220) and time to exhaustion (MIPS: 20.1 ± 6 min vs Placebo: 17 ± 5 min, p = 0.0226). There was no difference between supplements for both T90% V̇O2max (p = 0.9705) and EPOC (p = 0.4930). Consuming MIPS significantly increased the absolute oxidative energy system contribution by 23.8% (p = 0.0163) and the absolute ATP-CP contribution by 28.4% (p = 0.0055) compared to placebo. There was only a non-significant tendency for a higher glycolytic system contribution after MIPS ingestion (p = 0.0683). Conclusion Acute MIPS ingestion appears effective at increasing both aerobic and anaerobic alactic energy contribution and time to exhaustion during a HIIE protocol.
- Published
- 2020
- Full Text
- View/download PDF
10. Comparable blood velocity changes in middle and posterior cerebral arteries during and following acute high‐intensity exercise in young fit women
- Author
-
Lawrence Labrecque, Audrey Drapeau, Kevan Rahimaly, Sarah Imhoff, François Billaut, and Patrice Brassard
- Subjects
exercise ,middle cerebral artery ,posterior cerebral artery ,women ,Physiology ,QP1-981 - Abstract
Abstract The cerebral blood flow response to high‐intensity interval training (HIIT) remains unclear. HIIT induces surges in mean arterial pressure (MAP), which could be transmitted to the brain, especially early after exercise onset. The aim of this study was to describe regional cerebral blood velocity changes during and following 30 s of high‐intensity exercise. Ten women (age: 27 ± 6 years; VO2max: 48.6 ± 3.8 ml·kg·min−1) cycled for 30 s at the workload reached at V˙O2max followed by 3min of passive recovery. Middle (MCAvmean) and posterior cerebral artery mean blood velocities (PCAvmean; transcranial Doppler ultrasound), MAP (finger photoplethysmography), and end‐tidal carbon dioxide partial pressure (PETCO2; gaz analyzer) were measured. MCAvmean (+19 ± 10%) and PCAvmean (+21 ± 14%) increased early after exercise onset, returning toward baseline values afterward. MAP increased throughout exercise (p
- Published
- 2020
- Full Text
- View/download PDF
11. Impact of Hypoventilation Training on Muscle Oxygenation, Myoelectrical Changes, Systemic [K+], and Repeated-Sprint Ability in Basketball Players
- Author
-
Julien Lapointe, Pénélope Paradis-Deschênes, Xavier Woorons, Fréderic Lemaître, and François Billaut
- Subjects
repeated-sprint ability ,breath-hold ,hypoxia ,hypoventilation ,muscle oxygenation ,muscle recruitment ,Sports ,GV557-1198.995 - Abstract
This study investigated the impact of repeated-sprint (RS) training with voluntary hypoventilation at low lung volume (VHL) on RS ability (RSA) and on performance in a 30-15 intermittent fitness test (30-15IFT). Over 4 weeks, 17 basketball players included eight sessions of straight-line running RS and RS with changes of direction into their usual training, performed either with normal breathing (CTL, n = 8) or with VHL (n = 9). Before and after the training, athletes completed a RSA test (12 × 30-m, 25-s rest) and a 30-15IFT. During the RSA test, the fastest sprint (RSAbest), time-based percentage decrement score (RSASdec), total electromyographic intensity (RMS), and spectrum frequency (MPF) of the biceps femoris and gastrocnemius muscles, and biceps femoris NIRS-derived oxygenation were assessed for every sprint. A capillary blood sample was also taken after the last sprint to analyse metabolic and ionic markers. Cohen's effect sizes (ES) were used to compare group differences. Compared with CTL, VHL did not clearly modify RSAbest, but likely lowered RSASdec (VHL: −24.5% vs. CTL: −5.9%, group difference: −19.8%, ES −0.44). VHL also lowered the maximal deoxygenation induced by sprints ([HHb]max; group difference: −2.9%, ES −0.72) and enhanced the reoxygenation during recovery periods ([HHb]min; group difference: −3.6%, ES −1.00). VHL increased RMS (group difference: 18.2%, ES 1.28) and maintained MPF toward higher frequencies (group difference: 9.8 ± 5.0%, ES 1.40). These changes were concomitant with a lower potassium (K+) concentration (group difference: −17.5%, ES −0.67), and the lowering in [K+] was largely correlated with RSASdec post-training in VHL only (r = 0.66, p < 0.05). However, VHL did not clearly alter PO2, hemoglobin, lactate and bicarbonate concentration and base excess. There was no difference between group velocity gains for the 30-15IFT (CTL: 6.9% vs. VHL: 7.5%, ES 0.07). These results indicate that RS training combined with VHL may improve RSA, which could be relevant to basketball player success. This gain may be attributed to greater muscle reoxygenation, enhanced muscle recruitment strategies, and improved K+ regulation to attenuate the development of muscle fatigue, especially in type-II muscle fibers.
- Published
- 2020
- Full Text
- View/download PDF
12. Ischemic Preconditioning Enhances Aerobic Adaptations to Sprint-Interval Training in Athletes Without Altering Systemic Hypoxic Signaling and Immune Function
- Author
-
Pénélope Paradis-Deschênes, Denis R. Joanisse, Pascale Mauriège, and François Billaut
- Subjects
angiogenesis ,blood-flow restriction ,HIIT ,hypoxia ,NIRS ,peripheral adaptation ,Sports ,GV557-1198.995 - Abstract
Optimizing traditional training methods to elicit greater adaptations is paramount for athletes. Ischemic preconditioning (IPC) can improve maximal exercise capacity and up-regulate signaling pathways involved in physiological training adaptations. However, data on the chronic use of IPC are scarce and its impact on high-intensity training is still unknown. We investigated the benefits of adding IPC to sprint-interval training (SIT) on performance and physiological adaptations of endurance athletes. In a randomized controlled trial, athletes included eight SIT sessions in their training routine for 4 weeks, preceded by IPC (3 × 5 min ischemia/5 min reperfusion cycles at 220 mmHg, n = 11) or a placebo (20 mmHg, n = 9). Athletes were tested pre-, mid-, and post-training on a 30 s Wingate test, 5-km time trial (TT), and maximal incremental step test. Arterial O2 saturation, heart rate, rate of perceived exertion, and quadriceps muscle oxygenation changes in total hemoglobin (Δ[THb]), deoxyhemoglobin (Δ[HHb]), and tissue saturation index (ΔTSI) were measured during exercise. Blood samples were taken pre- and post-training to determine blood markers of hypoxic response, lipid-lipoprotein profile, and immune function. Differences within and between groups were analyzed using Cohen's effect size (ES). Compared to PLA, IPC improved time to complete the TT (Mid vs. Post: −1.6%, Cohen's ES ± 90% confidence limits −0.24, −0.40;−0.07) and increased power output (Mid vs. Post: 4.0%, ES 0.20, 0.06;0.35), Δ[THb] (Mid vs. Post: 73.6%, ES 0.70, −0.15;1.54, Pre vs. Post: 68.5%, ES 0.69, −0.05;1.43), Δ[HHb] (Pre vs. Post: 12.7%, ES 0.24, −0.11;0.59) and heart rate (Pre vs. Post: 1.4%, ES 0.21, −0.13;0.55, Mid vs. Post: 1.6%, ES 0.25, −0.09;0.60). IPC also attenuated the fatigue index in the Wingate test (Mid vs. Post: −8.4%, ES −0.37, −0.79;0.05). VO2peak and maximal aerobic power remained unchanged in both groups. Changes in blood markers of the hypoxic response, vasodilation, and angiogenesis remained within the normal clinical range in both groups. We concluded that IPC combined with SIT induces greater adaptations in cycling endurance performance that may be related to muscle perfusion and metabolic changes. The absence of elevated markers of immune function suggests that chronic IPC is devoid of deleterious effects in athletes, and is thus a safe and potent ergogenic tool.
- Published
- 2020
- Full Text
- View/download PDF
13. Effect of a 3-Weeks Training Camp on Muscle Oxygenation, V˙O2 and Performance in Elite Sprint Kayakers
- Author
-
Myriam Paquette, François Bieuzen, and François Billaut
- Subjects
muscle oxygenation ,oxygen extraction ,peripheral adaptations ,near infrared spectroscopy ,training load ,Sports ,GV557-1198.995 - Abstract
Purpose: Peripheral adaptations, as assessed via near-infrared spectroscopy (NIRS) derived changes in muscle oxygenation (SmO2), are good predictors of sprint kayak performance. Therefore, the goal of the present study was to assess changes in SmO2 and V˙O2 following a training camp in elite sprint kayakers to evaluate if the training prescribed elicits peripheral adaptations, and to assess associations between training-induced changes in physiological responses and performance.Methods: Eight male elite sprint kayakers, members of the Canadian National Team, performed a 200-m and 1,000-m on-water time trial (TT) before and after a 3-weeks winter training camp. Change in performance, V˙O2 and SmO2 of the biceps brachii were assessed in relation to training load.Results: Training load and intensity were increased by ~20% over the course of the training camp, which resulted in a 3.7 ± 1.7% (ES 1.2) and 2.8 ± 2.4% (ES 1.3) improvement in 200-m and 1,000-m performance, respectively. Performance improvement in the 200-m was concomitant to a reduced SmO2, an increased V˙O2 peak and an increased reoxygenation rate after the TT. The 1,000-m TT performance improvement was concurrent with a reduced SmO2 in the last half of the TT and an increased V˙O2 in the first minute of the TT.Conclusion: Our results strongly suggest that peripheral skeletal muscle adaptations occurred in these athletes with the proposed training plan. This further attests the benefit of using portable NIRS as a monitoring tool to track training-induced adaptations in muscle oxygen extraction in elite athletes.
- Published
- 2020
- Full Text
- View/download PDF
14. Commentary: Active Preconditioning With Blood Flow Restriction or/and Systemic Hypoxic Exposure Does Not Improve Repeated Sprint Cycling Performance
- Author
-
Hubert Bourgeois, Pénélope Paradis-Deschênes, and François Billaut
- Subjects
blood-flow restriction ,ischemic preconditioning ,hypoxia ,warm-up ,performance ,Physiology ,QP1-981 - Published
- 2020
- Full Text
- View/download PDF
15. Neuromuscular Adjustments Following Sprint Training with Ischemic Preconditioning in Endurance Athletes: Preliminary Data
- Author
-
Stéphan Bouffard, Pénélope Paradis-Deschênes, and François Billaut
- Subjects
blood-flow restriction ,HIIT ,hypoxia ,NIRS ,peripheral adaptation ,Sports ,GV557-1198.995 - Abstract
This preliminary study examined the effect of chronic ischemic preconditioning (IPC) on neuromuscular responses to high-intensity exercise. In a parallel-group design, twelve endurance-trained males (VO2max 60.0 ± 9.1 mL·kg−1·min−1) performed a 30-s Wingate test before, during, and after 4 weeks of sprint-interval training. Training consisted of bi-weekly sessions of 4 to 7 supra-maximal all-out 30-s cycling bouts with 4.5 min of recovery, preceded by either IPC (3 × 5-min of compression at 220 mmHg/5-min reperfusion, IPC, n = 6) or placebo compressions (20 mmHg, PLA, n = 6). Mechanical indices and the root mean square and mean power frequency of the electromyographic signal from three lower-limb muscles were continuously measured during the Wingate tests. Data were averaged over six 5-s intervals and analyzed with Cohen’s effect sizes. Changes in peak power output were not different between groups. However, from mid- to post-training, IPC improved power output more than PLA in the 20 to 25-s interval (7.6 ± 10.0%, ES 0.51) and the 25 to 30-s interval (8.8 ± 11.2%, ES 0.58), as well as the fatigue index (10.0 ± 2.3%, ES 0.46). Concomitantly to this performance difference, IPC attenuated the decline in frequency spectrum throughout the Wingate (mean difference: 14.8%, ES range: 0.88–1.80). There was no difference in root mean square amplitude between groups. These preliminary results suggest that using IPC before sprint training may enhance performance during a 30-s Wingate test, and such gains occurred in the last 2 weeks of the intervention. This improvement may be due, in part, to neuromuscular adjustments induced by the chronic use of IPC.
- Published
- 2021
- Full Text
- View/download PDF
16. Muscle oxygenation maintained during repeated-sprints despite inspiratory muscle loading.
- Author
-
Ramón F Rodriguez, Nathan E Townsend, Robert J Aughey, and François Billaut
- Subjects
Medicine ,Science - Abstract
A high work of breathing can compromise limb oxygen delivery during sustained high-intensity exercise. However, it is unclear if the same is true for intermittent sprint exercise. This project examined the effect of adding an inspiratory load on locomotor muscle tissue reoxygenation during repeated-sprint exercise. Ten healthy males completed three experiment sessions of ten 10-s sprints, separated by 30-s of passive rest on a cycle ergometer. The first two sessions were "all-out' efforts performed without (CTRL) or with inspiratory loading (INSP) in a randomised and counterbalanced order. The third experiment session (MATCH) consisted of ten 10-s work-matched intervals. Tissue saturation index (TSI) and deoxy-haemoglobin (HHb) of the vastus lateralis and sixth intercostal space was monitored with near-infrared spectroscopy. Vastus lateralis reoxygenation (ΔReoxy) was calculated as the difference from peak HHb (sprint) to nadir HHb (recovery). Total mechanical work completed was similar between INSP and CTRL (effect size: -0.18, 90% confidence limit ±0.43), and differences in vastus lateralis TSI during the sprint (-0.01 ±0.33) and recovery (-0.08 ±0.50) phases were unclear. There was also no meaningful difference in ΔReoxy (0.21 ±0.37). Intercostal HHb was higher in the INSP session compared to CTRL (0.42 ±0.34), whilst the difference was unclear for TSI (-0.01 ±0.33). During MATCH exercise, differences in vastus lateralis TSI were unclear compared to INSP for both sprint (0.10 ±0.30) and recovery (-0.09 ±0.48) phases, and there was no meaningful difference in ΔReoxy (-0.25 ±0.55). Intercostal TSI was higher during MATCH compared to INSP (0.95 ±0.53), whereas HHb was lower (-1.09 ±0.33). The lack of difference in ΔReoxy between INSP and CTRL suggests that for intermittent sprint exercise, the metabolic O2 demands of both the respiratory and locomotor muscles can be met. Additionally, the similarity of the MATCH suggests that ΔReoxy was maximal in all exercise conditions.
- Published
- 2019
- Full Text
- View/download PDF
17. Ischemic Preconditioning and Exercise Performance: An Ergogenic Aid for Whom?
- Author
-
Moacir Marocolo, François Billaut, and Gustavo R. da Mota
- Subjects
sports ,athletes ,blood flow occlusion ,enhancement ,conditioning ,Physiology ,QP1-981 - Published
- 2018
- Full Text
- View/download PDF
18. Combining Chronic Ischemic Preconditioning and Inspiratory Muscle Warm-Up to Enhance On-Ice Time-Trial Performance in Elite Speed Skaters
- Author
-
Philippe Richard and François Billaut
- Subjects
warm up ,chronic ischemic preconditioning ,high-level athletes ,muscle oxygen extraction ,blood volume ,sprint ,Physiology ,QP1-981 - Abstract
Elite athletes in varied sports typically combine ergogenic strategies in the hope of enhancing physiological responses and competitive performance, but the scientific evidence for such practices is very scarce. The peculiar characteristics of speed skating contribute to impede blood flow and exacerbate deoxygenation in the lower limbs (especially the right leg). We investigated whether combining preconditioning strategies could modify muscular oxygenation and improve performance in that sport. Using a randomized, single-blind, placebo-controlled, crossover design, seven male elite long-track speed skaters performed on-ice 600-m time trials, preceded by either a combination of preconditioning strategies (COMBO) or a placebo condition (SHAM). COMBO involved performing remote ischemic preconditioning (RIPC) of the upper limbs (3 × 5-min compression at 180 mmHg and 5-min reperfusion) over 3 days (including an acute treatment before trials), with the addition of an inspiratory muscle warm-up [IMW: 2 × 30 inspirations at 40% maximal inspiratory pressure (MIP)] on the day of testing. SHAM followed the same protocol with lower intensities (10 mmHg for RIPC and 15% MIP). Changes in tissue saturation index (TSI), oxyhemoglobin–oxymyoglobin ([O2HbMb]), deoxyhemoglobin–deoxymyoglobin ([HHbMb]), and total hemoglobin–myoglobin ([THbMb]) in the right vastus lateralis muscle were monitored by near-infrared spectroscopy (NIRS). Differences between COMBO and SHAM were analyzed using Cohen’s effect size (ES) and magnitude-based inferences. Compared with SHAM, COMBO had no worthwhile effect on performance time while mean Δ[HHbMb] (2.7%, ES 0.48; -0.07, 1.03) and peak Δ[HHbMb] (1.8%, ES 0.23; -0.10, 0.57) were respectively likely and possibly higher in the last section of the race. These results indicate that combining ischemic preconditioning and IMW has no practical ergogenic impact on 600-m speed-skating performance in elite skaters. The low-sitting position in this sport might render difficult enhancing these physiological responses.
- Published
- 2018
- Full Text
- View/download PDF
19. Goal Orientation and the Presence of Competitors Influence Cycling Performance
- Author
-
Andrew W. Hibbert, François Billaut, Matthew C. Varley, and Remco C. J. Polman
- Subjects
pacing ,time-trial ,motivation ,ego ,task ,Psychology ,BF1-990 - Abstract
Introduction: The aim of this study was to investigate time-trial (TT) performance in the presence of one competitor and in a group with competitors of various abilities.Methods: In a randomized order, 24 participants performed a 5-km cycling TT individually (IND), with one similarly matched participant (1v1), and in a group of four participants (GRP). For the GRP session, two pairs of matched participants from the 1v1 session were used. Pairs were selected so that TT duration was considered either inferior (INF) or superior (SUP) compared to the other pair of participants.Results: Overall, TT duration (P = 0.86, ηp2 < 0.01) was not different between conditions, while heart rate (HR) was significantly greater in GRP compared to IND (P < 0.01, ηp2 = 0.16). For INF, a large effect size for both mean power (P = 0.07, ηp2 = 0.15) and HR (P = 0.05, ηp2 = 0.16), indicates greatest effort in GRP. Pacing behavior was affected by competition but similar in 1v1 and GRP for SUP, while large effect sizes indicate an increased power output in the initial 750-m for INF in GRP. Additionally, for INF, there was a significant correlation with ego orientation for an increase in TT duration between the GRP session and both the IND (r = 0.43, P = 0.04) and 1v1 (r = 0.54, P = 0.01) sessions.Conclusion: For INF participants, intensity was increased when competing in GRP. Yet, the presence of the SUP competitors resulted in lesser performance improvements for ego oriented INF participants. These findings demonstrate that consideration should be given to the ability of competitors in a group setting to provide adequate motivation.
- Published
- 2018
- Full Text
- View/download PDF
20. Familiarization Protocol Influences Reproducibility of 20-km Cycling Time-Trial Performance in Novice Participants
- Author
-
Andrew W. Hibbert, François Billaut, Matthew C. Varley, and Remco C. J. Polman
- Subjects
familiarization ,exercise research design ,pacing ,performance ,time-trial ,Physiology ,QP1-981 - Abstract
Introduction: Exercise performance is reproducible in experienced athletes; however, less trained participants exhibit greater variability in performance and pacing. To reduce variability, it is common practice to complete a familiarization prior to experimental testing. However, there are no clear guidelines for familiarizing novice participants to a cycling time-trial (TT), and research findings from novice populations may still be influenced by learning effects. Accordingly, the aims of this study were to establish the variability between TTs after administering differing familiarization protocols (duration or type) and to establish the number of familiarization trials required to limit variability over multiple trials.Methods: Thirty recreationally active participants, with no prior experience of a TT, performed a 20-km cycling TT on five separate occasions, after completing either a full (FF, 20-km TT, n = 10), a half (HF, 10-km TT, n = 10) or an equipment familiarization (EF, 5-min cycling, n = 10).Results: Variability of TT duration across five TTs was the lowest after completing FF (P = 0.69, ηp2 = 0.05) compared to HF (P = 0.08, ηp2 = 0.26) and EF (P = 0.07, ηp2 = 0.21). In the FF group after TT2, the effect size for changes in TT duration was small (d < 0.49). There were large differences between later TTs in HF (d = 1.02, TT3-TT4) and EF (d = 1.12, TT4-TT5). The variability in mean power output profiles between trials was lowest within FF, with a similar pacing profile reproduced between TT3-TT5.Discussion: Familiarization of the exercise protocol influenced reproducibility of pacing and performance over multiple, maximal TTs, with best results obtained after a full experience of the exercise compared to HF and EF. The difference of TT1 to later TTs indicates that one familiarization is not adequate in reducing the variability of performance for novice participants. After the FF and an additional TT, performance changes between TTs were small, however, a reproducible pacing profile was not developed until after the FF and two additional TTs. These findings indicate that a minimum of three full familiarizations are necessary for novice participants to limit systematic error before experimental testing.
- Published
- 2017
- Full Text
- View/download PDF
21. Blood-Flow Restricted Warm-Up Alters Muscle Hemodynamics and Oxygenation during Repeated Sprints in American Football Players
- Author
-
Jean-François Fortin and François Billaut
- Subjects
warm-up ,blood-flow restriction ,pre-conditioning ,repeated-sprint ability ,team sports ,muscle oxygenation ,Sports ,GV557-1198.995 - Abstract
Team-sport athletes and coaches use varied strategies to enhance repeated-sprint ability (RSA). Aside from physical training, a well-conducted warm-up enhances RSA via increased oxidative metabolism. Strategies that impede blood flow could potentiate the effects of a warm-up due to their effects on the endothelial and metabolic functions. This study investigated whether performing a warm-up combined with blood-flow restriction (WFR) induces ergogenic changes in blood volume, muscle oxygenation, and RSA. In a pair-matched, single-blind, pre-post parallel group design, 15 American football players completed an RSA test (12 × 20 m, 20 s rest), preceded by WFR or a regular warm-up (SHAM). Pressure was applied on the athletes’ upper thighs for ≈15 min using elastic bands. Both legs were wrapped at a perceived pressure of 7 and 3 out of 10 in WFR and SHAM, respectively. Changes in gastrocnemius muscle oxygen saturation (SmO2) and total hemoglobin concentration ([THb]) were monitored with near-infrared spectroscopy. Cohen’s effect sizes (ES) were used to estimate the impact of WFR. WFR did not clearly alter best sprint time (ES −0.25), average speed (ES 0.25), total time (ES −0.12), and percent decrement score (ES 0.39). While WFR did not meaningfully alter average SmO2 and [THb], the intervention clearly increased the maximum [THb] and the minimum and maximum SmO2 during some of the 12 sprint/recovery periods (ES 0.34−1.43). Results indicate that WFR positively alters skeletal muscle hemodynamics during an RSA test. These physiological changes did not improve short-term RSA, but could be beneficial to players during longer activities such as games.
- Published
- 2019
- Full Text
- View/download PDF
22. Nitrate Supplementation Combined with a Running Training Program Improved Time-Trial Performance in Recreationally Trained Runners
- Author
-
Jeferson Santana, Diana Madureira, Elias de França, Fabricio Rossi, Bruno Rodrigues, André Fukushima, François Billaut, Fabio Lira, and Erico Caperuto
- Subjects
sport nutrition ,endurance training ,performance ,nitrate ,Sports ,GV557-1198.995 - Abstract
Our purpose was to verify the effects of inorganic nitrate combined to a short training program on 10-km running time-trial (TT) performance, maximum and average power on a Wingate test, and lactate concentration ([La−]) in recreational runners. Sixteen healthy participants were divided randomly into two groups: Nitrate (n = 8) and placebo (n = 8). The experimental group ingested 750 mg/day (~12 mmol) of nitrate plus 5 g of resistant starch, and the control group ingested 6 g of resistant starch, for 30 days. All variables were assessed at baseline and weekly over 30 days. Training took place 3x/week. The time on a 10-km TT decreased significantly (p < 0.001) in all timepoints compared to baseline in both groups, but only the nitrate group was faster in week 2 compared to 1. There was a significant group × time interaction (p < 0.001) with lower [La] in the nitrate group at week 2 (p = 0.032), week 3 (p = 0.002), and week 4 (p = 0.003). There was a significant group time interaction (p = 0.028) for Wingate average power and a main effect of time for maximum power (p < 0.001) and [La−] for the 60-s Wingate test. In conclusion, nitrate ingestion during a four-week running program improved 10-km TT performance and kept blood [La−] steady when compared to placebo in recreational runners.
- Published
- 2019
- Full Text
- View/download PDF
23. Heavy Resistance Training in Hypoxia enhances 1RM Squat Performance
- Author
-
Mathew William Hunter Inness, François Billaut, Emily Jane Walker, Aaron C Petersen, Alice Jane Sweeting, and Robert James Aughey
- Subjects
Resistance Training ,hypoxia ,power ,strength ,Hypertrophy. ,1RM squat ,Physiology ,QP1-981 - Abstract
Purpose:To determine if heavy resistance training in hypoxia (IHRT) is more effective at improving strength, power and increasing lean mass than the same training in normoxia.Methods:A pair-matched, placebo-controlled study design included 20 resistance-trained participants assigned to IHRT (FIO2 0.143) or placebo (FIO2 0.20), (n=10 per group). Participants were matched for strength and training. Both groups performed 20 sessions over 7 weeks either with IHRT or placebo. All participants were tested for 1RM, 20-m sprint, body composition and countermovement jump pre-, mid- and post-training and compared via magnitude-based inferences.Presentation of Results:Groups were not clearly different for any test at baseline. Training improved both absolute (IHRT: 13.1 ± 3.9%, effect size (ES) 0.60, placebo 9.8 ± 4.7%, ES 0.31) and relative 1RM (IHRT: 13.4 ± 5.1%, ES 0.76, placebo 9.7 ± 5.3%, ES 0.48) at mid. Similarly, at post both groups increased absolute (IHRT: 20.7 ± 7.6%, ES 0.74, placebo 14.1 ± 6.0%, ES 0.58) and relative 1RM (IHRT: 21.6 ± 8.5%, ES 1.08, placebo 13.2 ± 6.4%, ES 0.78). Importantly, the change in IHRT was greater than placebo at mid for both absolute (4.4% greater change, 90% Confidence Interval (CI) 1.0:8.0%, ES 0.21, and relative strength (5.6% greater change, 90% CI 1.0:9.4%, ES 0.31 (relative)). There was also a greater change for IHRT at post for both absolute (7.0% greater change, 90% CI 1.3:13%, ES 0.33), and relative 1RM (9.2% greater change, 90% CI 1.6:14.9%, ES 0.49). Only IHRT increased countermovement jump peak power at Post (4.9%, ES 0.35), however the difference between IHRT and placebo was unclear (2.7%, 90% CI -2.0:7.6%, ES 0.20) with no clear differences in speed or body composition throughout.Conclusion:Heavy resistance training in hypoxia is more effective than placebo for improving absolute and relative strength.
- Published
- 2016
- Full Text
- View/download PDF
24. Interaction of central and peripheral factors during repeated sprints at different levels of arterial O2 saturation.
- Author
-
François Billaut, Jarrod P Kerris, Ramon F Rodriguez, David T Martin, Christopher J Gore, and David J Bishop
- Subjects
Medicine ,Science - Abstract
PURPOSE:To investigate the interaction between the development of peripheral locomotor muscle fatigue, muscle recruitment and performance during repeated-sprint exercise (RSE). METHOD:In a single-blind, randomised and cross-over design, ten male team-sport athletes performed two RSE (fifteen 5-s cycling sprints interspersed with 25 s of rest; power self-selected) in normoxia and in acute moderate hypoxia (FIO2 0.138). Mechanical work, total electromyographic intensity (summed quadriceps electromyograms, RMSsum) and muscle (vastus lateralis) and pre-fontal cortex near-infrared spectroscopy (NIRS) parameters were calculated for every sprint. Blood lactate concentration ([Lac(-)]) was measured throughout the protocol. Peripheral quadriceps fatigue was assessed via changes in potentiated quadriceps twitch force (ΔQtw,pot) pre- versus post-exercise in response to supra-maximal magnetic femoral nerve stimulation. The central activation ratio (QCAR) was used to quantify completeness of quadriceps activation. RESULTS:Compared with normoxia, hypoxia reduced arterial oxygen saturation (-13.7%, P=0.001), quadriceps RMSsum (-13.7%, P=0.022), QCAR (-3.3%, P=0.041) and total mechanical work (-8.3%, P=0.019). However, the magnitude of quadriceps fatigue induced by RSE was similar in the two conditions (ΔQtw,pot: -53.5% and -55.1%, P=0.71). The lower cycling performance in hypoxia occurred despite similar metabolic (muscle NIRS parameters and blood [Lac(-)]) and functional (twitch and M-wave) muscle states. CONCLUSION:Results suggest that the central nervous system regulates quadriceps muscle recruitment and, thereby, performance to limit the development of muscle fatigue during intermittent, short sprints. This finding highlights the complex interaction between muscular perturbations and neural adjustments during sprint exercise, and further supports the presence of pacing during intermittent sprint exercise.
- Published
- 2013
- Full Text
- View/download PDF
Catalog
Discovery Service for Jio Institute Digital Library
For full access to our library's resources, please sign in.