1. A nonlinear elliptic system with a transport term and singular data.
- Author
-
Boccardo, Lucio, Orsina, Luigi, and Tello, J. Ignacio
- Subjects
SYMMETRIC matrices ,CONTINUOUS functions ,NONLINEAR systems ,CHEMOTAXIS - Abstract
We consider the nonlinear elliptic system $$\begin{align*} \left\{ \begin{array}{ll} u \in W_{0}^{\frac{N}{N-1}}(\Omega): & -\textrm{div}(M(x)\nabla u) + u = -\textrm{div}(u\,M(x)\,\nabla\psi) + f(x),\\ \displaystyle \psi \in W_0^{1,2}(\Omega): & -\textrm{div}(M(x)\nabla \psi) + \psi = R(u) + E(x)\,\nabla\psi, \end{array} \right. \end{align*}$$ { u ∈ W 0 N N − 1 (Ω) : − div (M (x) ∇u) + u = − div (u M (x) ∇ψ) + f (x) , ψ ∈ W 0 1 , 2 (Ω) : − div (M (x) ∇ψ) + ψ = R (u) + E (x) ∇ψ , where Ω is a bounded, open subset of $ \mathbb {R}^N $ R N , $ N \geq ~3 $ N ≥ 3 ; $ M(x) $ M (x) is a coercive, symmetric matrix with $ L^{\infty }(\Omega) $ L ∞ (Ω) coefficients; $ f(x) $ f (x) and $ E(x) $ E (x) belong to some Lebesgue space, and $ R(s) $ R (s) is a continuous function such that $$\begin{align*} 0 \leq R(s)\leq |s|^{\theta}, \quad \mbox{for}\ \theta { \lt } \frac{2}{N}. \end{align*}$$ 0 ≤ R (s) ≤ | s | θ , for θ < 2 N. Using a duality technique, we prove existence of at least a weak solution $ (u,\psi) $ (u , ψ). Moreover, if N=3 or N=4, we prove under stronger assumptions on $ f(x) $ f (x) and $ E(x) $ E (x) that the solution u belongs to $ W_0^{1,2}(\Omega) $ W 0 1 , 2 (Ω). [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF