1. Anti-explosion performance and dynamic response of an innovative multi-layer composite explosion containment vessel.
- Author
-
Zhen Wang, Heng Chen, Qi Yuan, Wenbin Gu, Xingbo Xie, and Hongwei Li
- Subjects
HONEYCOMBS ,DEFORMATIONS (Mechanics) ,SHOCK waves ,TECHNOLOGICAL innovations ,COMPUTER simulation - Abstract
An innovative multi-layer composite explosion containment vessel (CECV) utilizing a sliding steel plate-aluminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional single-layer explosion containment vessel (SECV). Firstly, a series of experiments and finite element (FE) simulations of internal explosions are implemented to understand the basic anti-explosion characteristics of a SECV and the rationality of the computational models and methods is verified by the comparison between the experimental results and simulation results. Based on this, the CECV is designed in detail and a variety of FE simulations are carried out to investigate effects of the sandwich structure, the explosive quantity and the laying mode of the fiber cloth on anti-explosion performance and dynamic response of the CECV under internal explosions. Simulation results indicate that the end cover is the critical position for both the SECV and CECV. The maximum pressure of the explosion shock wave and the maximum strain of the CECV can be extremely declined compared to those of the SECV. As a result, the explosive quantity the CECV can sustain is up to 20 times of that the SECV can sustain. Besides, as the explosive quantity increases, the internal pressure of the CECV keeps growing and the plastic deformation and failure of the sandwich structure become more and more severe, yielding plastic strain of the CECV in addition to elastic strain. The results also reveal that the laying angles of the fiber cloth's five layers have an impact on the anti-explosion performance of the CECV. For example, the CECV with fiber cloth layered in 0(/45(/90(/45(/0( mode has the optimal anti-capacity, compared to 0(/0(/0(/0(/ 0( and 0(/30(/60(/30(/0( modes. Overall, owing to remarkable anti-explosion capacity, this CECV can be regarded as a promising candidate for explosion resistance. [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF