1. Multi-Step Slotting Method for Evaluating In-Place Stress in Concrete.
- Author
-
Zhao-Dong Xu, Yi Zhang, Jin-Bao Li, Xing-Huai Huang, and Ying-Qing Guo
- Subjects
STRAIN gages ,FINITE element method ,CONCRETE ,SUBSTRATE integrated waveguides - Abstract
The slotting method is a nondestructive detection method based on the stress release principle to evaluate in-place stress in concrete. By measuring the change in strain of the slotting area using a strain gauge, the in-place stress within the concrete member can be calculated by elastic theory. This paper proposes a multi-step slotting method that combines experimental strain measurements with numerical simulation results. For concrete specimens under unidirectional stress, the effects of compressive stress, slotting spacing, slotting length, and slotting depth on the degree of stress release were analyzed using finite element analysis, and a normalized fitting equation was proposed that can be quickly and accurately applied in engineering detection. The excellent agreement between the experimental results and the numerical simulation (fitted equation) results shows that the slotting method can facilitate the accurate evaluation of the in-place stress in concrete, and the relative error can be reduced to less than 10% when it is calculated using the optimized multi-step experimental data. [ABSTRACT FROM AUTHOR]
- Published
- 2023
- Full Text
- View/download PDF