1. Spatiotemporal variations, source identification, and risk assessment of potentially toxic elements in the surface water of Felent Stream impacted by the silver mine.
- Author
-
Tokatlı, Cem, Ustaoğlu, Fikret, Muhammad, Said, and Yüksel, Bayram
- Subjects
SILVER mining ,HEAVY metal toxicology ,WATER pollution ,PRINCIPAL components analysis ,WATER quality ,TRACE elements - Abstract
The silver deposits located in the upper basin of the Felent Stream are currently the largest producing mine in the Türkiye. It is also significantly impacted by industrial, agricultural, and thermal spring-related waste in Kütahya Province. The main objectives of this study were to examine the spatiotemporal variations of 12 dissolved potentially toxic elements (PTEs) in the surface water of Felent Stream, to identify their possible sources, and to assess their probable risks. As a result of this study, among investigated PTEs, the highest mean concentrations of 3592–14,388 µg/L for Mg and the lowest of 0.15–0.19 µg/L for Cd were noted in Felent Stream water. The average concentrations of PTEs were found in the order of Mg > Ca > Na > As > Mn > B > Zn > Ni > Cu > Pb > Cr > Cd. Remarkably, during the dry season, there was a conspicuous escalation in the average PTEs contents of water, with an approximately multifold amplification. PTEs in stream water were evaluated for their potential ecotoxicological risks and possible sources. Based on ecological risk assessment indices, the stream exhibited low pollution levels during the wet season but displayed elevated pollution levels during the dry season, indicating a general shift towards heightened pollution conditions. The hazard index (HI) data for As exhibited significant potential noncarcinogenic risks across all monitoring stations. Conversely, the carcinogenic risk (CR) data underscored the imperative nature of addressing the health risks associated with As in the waters of the studied region. Mining activities were identified as the primary origin of PTEs based on principal component analysis (PCA). Moreover, upstream regions, proximal to the mining site, emerged as the most heavily contaminated areas according to cluster analysis (CA). [ABSTRACT FROM AUTHOR]
- Published
- 2024
- Full Text
- View/download PDF