1. Mechanistic insights into the conversion of flavin adenine dinucleotide (FAD) to 8-formyl FAD in formate oxidase: a combined experimental and in-silico study.
- Author
-
Wen, Kai, Wang, Sirui, Sun, Yixin, Wang, Mengsong, Zhang, Yingjiu, Zhu, Jingxuan, and Li, Quanshun
- Subjects
FLAVIN adenine dinucleotide ,OXIDATION of formic acid ,MOLECULAR dynamics ,ACTIVATION energy ,FLAVOPROTEINS ,FORMIC acid ,OXIDOREDUCTASES ,DINUCLEOTIDES ,HISTIDINE - Abstract
Formate oxidase (FOx), which contains 8-formyl flavin adenine dinucleotide (FAD), exhibits a distinct advantage in utilizing ambient oxygen molecules for the oxidation of formic acid compared to other glucose-methanol-choline (GMC) oxidoreductase enzymes that contain only the standard FAD cofactor. The FOx-mediated conversion of FAD to 8-formyl FAD results in an approximate 10-fold increase in formate oxidase activity. However, the mechanistic details underlying the autocatalytic formation of 8-formyl FAD are still not well understood, which impedes further utilization of FOx. In this study, we employ molecular dynamics simulation, QM/MM umbrella sampling simulation, enzyme activity assay, site-directed mutagenesis, and spectroscopic analysis to elucidate the oxidation mechanism of FAD to 8-formyl FAD. Our results reveal that a catalytic water molecule, rather than any catalytic amino acids, serves as a general base to deprotonate the C8 methyl group on FAD, thus facilitating the formation of a quinone-methide tautomer intermediate. An oxygen molecule subsequently oxidizes this intermediate, resulting in a C8 methyl hydroperoxide anion that is protonated and dissociated to form OHC-RP and OH
− . During the oxidation of FAD to 8-formyl FAD, the energy barrier for the rate-limiting step is calculated to be 22.8 kcal/mol, which corresponds to the required 14-hour transformation time observed experimentally. Further, the elucidated oxidation mechanism reveals that the autocatalytic formation of 8-formyl FAD depends on the proximal arginine and serine residues, R87 and S94, respectively. Enzymatic activity assay validates that the mutation of R87 to lysine reduces the kcat value to 75% of the wild-type, while the mutation to histidine results in a complete loss of activity. Similarly, the mutant S94I also leads to the deactivation of enzyme. This dependency arises because the nucleophilic OH− group and the quinone-methide tautomer intermediate are stabilized through the noncovalent interaction provided by R87 and S94. These findings not only explain the mechanistic details of each reaction step but also clarify the functional role of R87 and S94 during the oxidative maturation of 8-formyl FAD, thereby providing crucial theoretical support for the development of novel flavoenzymes with enhanced redox properties. [ABSTRACT FROM AUTHOR]- Published
- 2024
- Full Text
- View/download PDF